
Memory_Services
Memory caching and retrieval utility.

Syntax

Response = Memory_Services(@Service, @Params)

Returns

The meaning of the response value depends on the service.

Parameters

Parameter Description

@Service The name of the service being requested. Required.

@Params Generic parameters. Refer to a specific service to determine the actual parameters used.

Remarks

This SRP FrameWorks utility service is designed to store small and large amounts of data in memory for quick retrieval. A very common use of Memory_Se
 is to store the results of other services. Thus, the beginning of each service would first check to see if a value already exists before going through rvices

the expense of running the entire service logic again. If the data being stored in needs to be refreshed after a short amount of time, Memory_Services
the service can specify when this should expire.GetValue

Services

Service Description

KeyExists Usage:
Memory_Services('KeyExists', KeyID, CacheName)

Comments:
Returns a or depending on whether the Key ID exists.True False

Returns:
True if Key ID already exists in the SRP Hash Table, if it does not exist.False

GetValue Usage:
_Services('GetValue', KeyID, NotExpired, ExpirationDuration)Memory , CacheName

Comments:
Returns the value pair stored in the SRP Hash Table for the current Key ID. If the flag is set, the will be NotExpired ExpirationDuration
used to compare against the last time marker set for the current data.

Returns:
The value associated to the Key ID.

SetValue Usage:
Memory_Services('SetValue', KeyID, Value, CacheName)

Comments:
Updates the value pair stored in the SRP Hash Table for the current Key ID.

Returns:
N/A

IsValueEx
pired

Usage:
Memory_Services('IsValueExpired', KeyID, ExpirationDuration, ResetAge, CacheName)

Comments:
This relies upon the time marker set using the service. If this value has net yet been set then the value will be considered as SetValue
expired.

Returns:
Returns a Boolean flag indicated whether the current value for the indicated KeyID has expired.

IsValueCu
rrent

Usage:
Memory_Services('IsValueCurrent', KeyID, ExpirationDuration, ResetAge, CacheName)

Comments:
This relies upon the time marker set using the service. If this value has net yet been set then the value will be considered as SetValue
expired.

Returns:
Returns a Boolean flag indicated whether the current value for the indicated KeyID is still current.

RemoveK
ey

Usage:
_Services('RemoveKey', KeyID)Memory , CacheName

Comments:
Removes the Key ID, and its value pair, from the SRP Hash Table.

Returns:
N/A

CreateHas
hTable

Usage:
_Services('CreateHashTable')Memory , CacheName

Comments:
Creates the SRP Hash Table that the module will use to manage various Key ID and Value pairs. A check will first be Memory_Services
made to see if the handle to the Hash Table already exists. If so then it will be released and a new Hash Table will be created.

Returns:
Returns the handle to the newly created SRP Hash Table.

ReleaseHa
shTable

Usage:
_Services('ReleaseHashTable')Memory , CacheName

Comments:
Releases the SRP Hash Table handle. If is empty then the default handle is released.CacheName

Returns:
N/A

RemoveAl
lHashTabl
es

Usage:
Memory_Services('ReleaseHashTable')

Comments:
Releases the all SRP Hash Table handles.

Returns:
N/A

GetHandle Usage:
_Services('GetHandle')Memory , CacheName

Comments:
Returns the handle to the SRP Hash Table used by .Memory_Services

Returns:
See comments.

Params

The proper use of the generic arguments are defined in the definition of each service above.

	Memory_Services

