
HTTP_JSON_Services
Application service module that helps build responses using various JSON formats.

Syntax

Response = HTTP_JSON_Services(@Service, @Params)

Returns

The meaning of the response value depends on the service.

Parameters

Parameter Description

@Service The name of the service being requested. Required.

@Params Generic parameters. Refer to a specific service to determine the actual parameters used.

Remarks

The SRP HTTP Framework supports two popular JSON friendly data formats: and . HAL stands for and is HAL Schema Hypermedia Application Language
an emerging format that implements the constraint of REST. There are other formats that are also emerging and none hold dominance at this HATEOAS
point. Likewise, JSON itself stands alongside XML as a widely accepted general purpose format for representing resources. Therefore, if you need or
prefer to use another format then you are welcome to extend (in case you want to use a different hypermedia format, such as HTTP_JSON_Services Coll

) or write a new service such as (in case you want to use a different data format, such as XML).ection HTTP_XML_Services

Schema is a meta-data format. It is used to notify clients what kind of data is available, which is handy when user interfaces need to be dynamically built.
Schema can be used to define if a prompt is text, numeric, date, combobox, Boolean, etc. Like HAL, Schema is also an emerging format. There are others
that may be better suited to your needs.

Services

Service Description

SetHALItem Usage:
HTTP_JSON_Services('SetHALItem', ItemURL, ColumnNames, ColumnValues, DataTypes)

Comments:
Creates a HAL+JSON object for a specific item. Requires the GetHAL service to return the serialized object.

Returns:
N/A

SetHALCollecti
on

Usage:
HTTP_JSON_Services('SetHALCollection', CollectionURL, ItemsURLs, ItemsTitles)

Comments:
Creates a HAL+JSON object for a collection. Requires the GetHAL service to return the serialized object.

Returns:
N/A

SetHALCollecti
onEmbedded

Usage:
HTTP_JSON_Services('SetHALCollectionEmbedded', CollectionURL, ItemsURLs, ColumnNames,
ColumnValues, DataTypes)

Comments:
Creates a HAL+JSON object for a collection of embedded items. Requires the GetHAL service to return the serialized object.

Returns:
N/A

http://stateless.co/hal_specification.html
http://json-schema.org/documentation.html
http://en.wikipedia.org/wiki/HATEOAS
http://amundsen.com/media-types/collection/
http://amundsen.com/media-types/collection/

SetHALLinks Usage:
HTTP_JSON_Services('SetHALLinks', SelfURI, HREFNames, HREFURIs, ChildNames, hChildren, Names,
Values)

Comments:
Creates a HAL style "links" object.

Returns:
N/A

GetHAL Usage:
HTTP_JSON_Services('GetHAL', ItemArrayLabel)

Comments:
Returns the serialized JSON object for the current HAL response. If no HAL object has been defined then this will return an empty
string and a 500 status code will be set. All HAL objects and arrays will be released in this service.

Returns:
A serialized HAL+JSON object based based on the current HAL objects in memory.

GetSchemaRoo
tObj

Usage:
HTTP_JSON_Services('GetSchemaRootObj')

Comments:
Returns the handle to a root Schema object. If it does not already exist it will be created with the standard "$schema" value already
added.

Returns:
Handle to a root Schema+JSON object.

SetSchemaMeta Usage:
HTTP_JSON_Services('SetSchemaMeta', Title, Description, Type)

Comments:
Sets the meta data associated to the schema object.

Returns:
N/A

SetSchemaPro
perty

Usage:
HTTP_JSON_Services('SetSchemaProperty', Name, Title, Type, Format, EnumList, Required)

Comments:
Sets a property to the schema. There can be more than one property so this service will add another property to the list if it already
exists.

Returns:
N/A

GetSchema Usage:
HTTP_JSON_Services('GetSchema')

Comments:
Returns the serialized JSON object for the current schema. If no schema object has been defined then this will return an empty string
and a 500 status code will be set. All schema objects and arrays will be released in this service.

Returns:
A serialized Schema+JSON object based based on the current Schema objects in memory.

GetURLFromID Usage:
HTTP_JSON_Services('GetURLFromID', ID)

Comments:
Returns a URL segment for the ID passed into the service. This creates a "slug" style URL so that it will be search friendly, human
readable, and an RESTful.

Returns:
A "slug" style URL segment for a given resource ID.

GetIDFromURL Usage:
HTTP_JSON_Services('GetIDFromURL',)URL, Array

Comments:
Returns the ID based on the URL passed into the service. This service attempts to reverse engineer the URL.

Returns:
A resource (item) ID.

Params

The proper use of the generic arguments are defined in the definition of each service above.

	HTTP_JSON_Services

