
Error_Services
Error tracking and reporting utility.

Syntax

Response = Error_Services(@Service, @Params)

Returns

The meaning of the response value depends on the service.

Parameters

Parameter Description

@Service The name of the service being requested. Required.

@Params Generic parameters. Refer to a specific service to determine the actual parameters used.

Remarks

This SRP FrameWorks utility service is a general purpose error tracking and reporting utility. Unlike OpenInsight error routines, Error_Services does
not interfere with normal operations even if a previous error condition was set. The developer is given the right (and responsibility) to make these decisions.

Services

Service Description

Set Usage:
Error_Services('Set', ErrorMessage)

Comments:
Sets an error to the stack. This will automatically clear any existing error conditions first so this error will be the only one on the stack.

Returns:
N/A

Add Usage:
Error_Services('Add', ErrorMessage)

Comments:
Adds an error to the stack. This will not clear existing error conditions first. It is intended to allow higher level routines to add more
information to an existing error condition or simply to maintain an ongoing error log for some troubleshooting or debugging purposes.

Returns:
N/A

Clear Usage:
Error_Services('Clear')

Comments:
Clears all error conditions and related information.

Returns:
N/A

GetMess
age

Usage:
Error_Services('GetMessage')

Comments:
Returns the most current error message.

Returns:
The most current error message.

GetMess
ages

Usage:
Error_Services(' ')GetMessages

Comments:
Returns the stack of error messages. This will be @FM delimited.

Returns:
The stack of error messages.

HasError Usage:
Error_Services('HasError')

Comments:
Returns if there is an error condition, if there is no error condition. Caller will still need to use the or True False GetMessage GetMessages
service to determine what the error is. The service allows the caller to embed the service call inside of a HasError Error_Services
conditional statement like this:

If Error_Services('HasError') then
* An error has occured. Proceed accordingly.
ErrorMessage = Error_Services('GetMessage')
end else
* No error has occured.
end

Returns:
 if there is an error condition, if there is no error condition.True False

NoError Usage:
Error_Services('NoError')

Comments:
Returns if there are no error conditions, if there is an error condition. This is the opposite of the service and exists for True False HasError
improved readability.

Returns:
True if there are no error conditions, if there is an error condition.False

DisplayE
rror

Usage:
Error_Services('DisplayError')

Comments:
Displays the current error message to the end user. is designed to avoid any user interface so it can be safe to use in Error_Services
application contexts where no presentation server context is available (e.g., web applications). For convenience, the service DisplayError
was added to make it easy to display the most recent error added to the stock.

Returns:
N/A

Params

The proper use of the generic arguments are defined in the definition of each service above.

	Error_Services

