
Service-Oriented Architecture
SRP FrameWorks and the SRP HTTP Framework module both use a (SOA) approach to assist with general programming Service-Oriented Architecture
and business solution tasks. Each stand-alone portion of logic is referred to as an . To help with organization, services with a common application service
general purpose are grouped into (also known as). In OpenInsight, are represented by stored service modules service handlers service modules
procedures: , , etc. Within each are the respective (or just for short). HTTP_Services Security_Services service module application services services Se

 are organized within via and blocks.rvices service modules label return

Our SOA paradigm fits within the broader architecture known as (MVC). As previously documented, the represents the Model-View-Controller Model
database and business logic processes. The represents the user interface (e.g., OpenInsight Form, HTML) and its respective event logic (e.g., View
BASIC+ Commuter Module, JavaScript). Finally, the represents the middleware that allows the and to communicate with one Controller Model View
another. and their respective typically fall within the layer. Consequently, should be designed carefully to avoid Service Modules Services Model services
actions that belong to a . For instance, this means a designed for business logic should not invoke a UI. Likewise, logic should not View service View
directly access the database. This requires discipline and an acceptance of the MVC philosophy (of course, the inherent design of any web application
enforces this architecture already).

Well designed services are more than individual pieces of programming logic. Here are some of the key principles of a service oriented approach:

Reusable business processes - Logic that tends to be called more than once or from more than one location should be wrapped up in a service.

Self-contained - Services should be capable of performing their duties only using the supplied arguments. Thus, data stored in global variables,
commons, etc., cannot be used, since this establishes a state that might not be duplicated under other conditions. In this regard, services are blac

, engines that receive incoming data and send back a response. The same incoming data will always yield the same response.k boxes

Modular - A service can rely upon other services, as long as each service follows the same key principles described in this article.

When a service is designed using the above principles, it is also suitable for unit testing. This makes it easier to validate the proper functionality of any
service without having to run the full application. It also makes it easier to confirm that changes to the service logic (such as refactoring) does not alter
expected behavior.

https://en.wikipedia.org/wiki/Service-oriented_architecture
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Services
https://wiki.srpcs.com/display/HTTPFramework/Model-View-Controller

	Service-Oriented Architecture

