STYLE(STYLE EX)

Applies to

All controls.

Description

Sets or retrieves the Windows SDK style (long integer) for a control.

Usage
style = Get_Property (controlID, "STYLE")

oldstyle = Set_Property (controllD, "STYLE", newstyle)

Remarks

The styles for all standard Windows controls are defined in the WINDOWS.H file that comes with the Windows SDK or any Windows C/C++ compiler. The
following styles apply to the edit table custom control:

Value Description
4 Editable (allow row insertion and deletion)
8 Allow Resizing
16 Numbers - Column heading are 1, 2, 3, ...
32 Letters - Column headings are A, B, C, ...
48 OwnerDef - Column headings are set by the user
64 Display Horizontal Grid
128 Display Vertical Grid
256 Permit Row Selection
512 Multi-Row Selection
1024 Permit Column Selection
4096 Allow >64k of data (but disallow column addition or deletion using Send_Message)

8192 Display Row Buttons

16384 Display Row Numbers

See also

PSStyle property, COLSTYLE message, Bitwise operators, IConv(expression, "MX"), OConv(expression, "MX"), RTI_Style_Equates

Microsoft Windows SDK

Examples

Window and control styles are designed as bitmasks. Each style typically uses one bit of the STYLE property, and is either set (1) or not set (0). To set a
style, you bitor the current style with the style that you want to add. For example, the following subroutine could be used to set a specific style for a specific
control:

https://wiki.srpcs.com/display/Properties/PSSTYLE
https://wiki.srpcs.com/display/Commands/COLSTYLE
https://wiki.srpcs.com/pages/viewpage.action?pageId=2491437
https://wiki.srpcs.com/display/Commands/IConv+MX%2C+HEX%2C+MO%2C+MB+Function
https://wiki.srpcs.com/display/Commands/OConv+MX%2C+HEX%2C+MO%2C+MB+Functions
https://wiki.srpcs.com/display/Properties/RTI+Style+Equates

subroutine SetStyle(CrlEntlD, AddStyle)

decl are function CGet _Property
decl are subroutine Set_Property

* get the current style

Style = Get_Property(CtrlEntlID, "STYLE")

* the style property can be in hex format but bitor only works with deci mal integers
if Style [1,2] _eqc "0x" then

convert @ower.case to @pper.case in Style

Style = iconv(Style [3,99], "MX")

end

* add the new style

Style = bitor(Style, AddStyle)

Set _Property(Cirl Ent1 D, "STYLE", Style)

return

To clear a style, you bitand the current style with all styles but the style that you are removing. The following subroutine could be used to clear a specific
style for a specific control:

subroutine ClearStyle(CtrlEntl D, RenoveStyle)

decl are function Get _Property
decl are subroutine Set_Property

* get the current style
Style = Get_Property(Ctrl EntlD, "STYLE")

* the style property can be in hex format but bitor only works with deci mal integers
if Style [1,2] _eqc "0x" then

convert @ower.case to @pper.case in Style

Style = iconv(Style [3,99], "MX")

end

* renpve the specified style

Style = bitand(Style, bitnot(RenpveStyle))
Set _Property(CtrlEntID, "STYLE', Style)
return

To test if a style is set, use the bitand function on the current style with the style that you are looking for. The following function could be used to test if a
style is set for a specific control:

function IsStyleSet(CrlEntlD, TestStyle)

decl are function CGet _Property
decl are subroutine Set_Property

* Get the current style
Style = Get_Property(Cirl Ent1 D, "STYLE")

* the style property can be in hex format but bitor only works with decimal integers.
if Style [1,2] _eqc "Ox" then

convert @ower.case to @upper.case in Style
Style = iconv(Style [3,99], "MX")
end

* check for the specified style
bEXi sts = (bitand(Style, TestStyle) > 0)

return bExists

Some styles cannot be set or cleared using the STYLE property. This is due to how the controls are implemented internally. Because of this, save your
work before testing style changes. For styles that can not be set or cleared, you must destroy the control and re-create it with the desired style. Although
this sounds difficult, the following example can be modified and used for almost all cases. Also the TABBED_TEMPLATE form in the Examples application
uses a similar method to change bitmap check-boxes into bitmap radio buttons in the CREATE event.

/* this code snippet changes a bitnmap control into a control that displays systemicons, as displayed in
W ndows nessages;

this code is fromthe nessage designer in the U Wrkspace(PSPOS_BI TMAP$ can be | NFO, QUESTI ON, EXCLAMATI ON,
and HAND) */

$i nsert PS_Equates

Struct = Get_Property(CtrlEntlD, "ORI G STRUCT")
Struct<1l, PSPOS_SDKSTYLE$> = "0x50000003"
Struct<1, PSPOS_BI TMAP$ > = "| NFO'

Struct<1, PSPCS_VISIBLE$ > = TRUE$

Struct<l, PSPOS_PSSTYLE$ > = ""
Utility("DESTROY", CtrlEntlD)

Utility("CREATE", Struct)

* Here is anot her exanple which changes the justification of an edit control:
* This code snippet assunmes that the variable Just is set to L, R or C (left, right or center)

$i nsert PS_Equates

equ ES_LEFT to O
equ ES_ CENTER to 1
equ ES_RI GHT to 2

/* since the control is going to be destroyed then recreated,
get the current text value so it isn't lost */

Text = Get_Property(Ctrl EntID, "TEXT")

Style Get _Property(Ctrl Ent1 D, "STYLE")
Struct = Get_Property(CirlEntID, "ORI G_STRUCT")
if Style [1,2] _eqc "0x" then

convert @ower.case to @pper.case in Style
Style = iconv(Style [3,99], "MX")

end

* first turn off left, right, and center justification
All = bitor(ES_LEFT, bitor(ES_CENTER, ES_RIGHT))
Style = bitand(Style, bitnot(Al))

* next, turn on specific justification style

begi n case

case Just = "L"
AddStyl e = ES_LEFT
case Just = "C'
AddStyl e = ES_CENTER
case Just = "R'
AddStyl e = ES_RI GHT
end case

Style = bitor(Style, AddStyle)

* next, destroy and recreate the control with the new just
Struct <1, PSPOS_SDKSTYLE$> = Style

Struct <1, PSPOS_TEXT$ > = Text

Utility("DESTROY", Ctrl EntlD)

Utility("CREATE", Struct)

	STYLE(STYLE EX)

