Adding a Form to SRP FrameWorks

Introduction

SRP FrameWorks is designed to provide a recognizable and intuitive interface for Openlinsight applications. It's MDI Frame architecture takes advantage
of SRP OLE controls to present a professional front-end that looks and behaves like many modern Windows® based business applications.

Because SRP FrameWorks uses promoted events and commuter modules as a foundation, development and maintenance of your application will remain
relatively easy...even as the system grows and becomes more complex.

As with any application, forms (aka windows) are the key element that allows the end user to interact with the environment. Therefore, the following is an
outline of how a standard form should be created and added to SRP FrameWorks in order to take advantage of its built-in features.

Step #1 - Design the Form in Form Designer

Use the Form Designer to create your form in the normal fashion. We have provided a tool to help you get started with a fully function form and commuter
module - SRP Form Copy:

&2 SRP Form Co pY |Z| |E| f‘5__<|
Window
Source Destination
Application | FRAMEWORKS v | Application | FRAMEWORKS v|
Window Mame | DEW_SAMPLES v| Window Mame | DEY_CUUSTOMER |

Commuter Module

Source Destinakion
Application | FRAMEWORKS v | Application | FRAMEWORKS v|
Programm | DB _SAMPLES_EVEMTS v| Program | DEW_CUSTOMER_EVENTS |

o] ’ Apply] ’ Rename] ’ Clear] [Cancel]

This will create a copy of an existing form and commuter module so you can modify rather than create from scratch. SRP FrameWorks ships with a "blank
slate" form, DBW_SAMPLER3, that can be useful until more fully functional forms have been developed.

While Script Event and traditional QuickEvent handlers will work, SRP FrameWorks is designed to take advantage of Promoted Events. If a commuter
module uses the correct naming convention (see below) then the promoted events will automatically call a form's commuter module automatically, both for
pre and post-System Event handling. Therefore, this eliminates the need for Script Events handlers which are difficult to maintain and the need for
QuickEvent handlers which can only be added or modified from within the Form Designer. Our approach allows virtually all event management to be
controlled through the System Editor.

While the name of the form is not critical, the name of your commuter module should conform to our standard. Commuter modules should be named as
such:

For mNane_EVENTS

Furthermore, your parameter heading should always look like this:

Function For mName_EVENTS(Ctrl Entld, Event, Paranl, ParanR, ParanB. . .Paranil5)
As previously mentioned, a sample form and commuter module skeleton have been included (DBW_SAMPLE3 and DBW_SAMPLE3_EVENTS) to give

you a good starting point for new forms. Using the SRP Form Copy utility we will create a new form called DBW_TEST. It will serve as our example for the
rest of this document:

https://wiki.srpcs.com/display/SRPFrameWorks/Commuter+Modules
https://wiki.srpcs.com/display/SRPFrameWorks/Commuter+Modules

3. Openlnsight Form Designer.

File Edit

View Properties

Tools Dakak

Contral Mame |DEw TEST
. Form Designer

Page 1]Page 2| Page 3|

First Contral

‘\—u S e s W LN

Keep in mind that most SRP FrameWorks forms will be MDI Child forms. Although MDI Child forms can have their own menu, this menu automatically
becomes the menu for the MDI Frame (i.e. FRW_MAIN) when the MDI Child becomes active. If you choose to create a menu for any MDI Child forms then
you will need to recreate all of the normal menu functionality that would normally be provided by FRW_MAIN. Because of the additional work that this
provides, we strongly recommend creating MDI Child forms without any menus and take advantage of the menu in the MDI Frame (which is the way
FRW_MAIN was designed to work.)

(L) DEMY_TEST_EVENTS

| Function DEW Test Ewvents (CtrlEntId, Event, Paraml,

Step #2 - Add the Form to the MDI Frame (FW_MAIN)

There are three ways that a form can be launched from within SRP FrameWorks. First, you can use the Menu Designer from within the Form Designer to
add menu items that will launch your form. You can use the menu QuickEvent dialog box to create an option that launches an MDI Child form or you can
call a stored procedure (e.g. FRW_MAIN_EVENTS) to handle the launching of the MDI Child for you:

File Edit Wew Help

Accelerator key
[~ Al [~ Cul [Shift

Key [<nanes =

[™ Checked | Endaroup

™ Don't generate event
™ Generate LostFocus event

[” Pass event to MDI frame
™ Use MDI frame properties

Event handlers

) (=] (1= (21 (3]

Popup/item text | Test

Popup/item |0 | SAMPLE.TEST

Help text |

Menu structure

Event

QuickEvent for SAMPLE. TEST

|SaMPLE TEST

Styles
™ Hidden ™ Auto-check
[” Disabled | Begin group

— Eduit

[=) aEdt

— Sample Window (Single Page)
— Sample Windaw (Multi-Page Scrallbary
— Sample Windaw (Multi-Page Tabbed)

BAdmin
— Auto Shutdown

-~ BuickEvent Options

General
Call Commuter Module
Start & window
Start D child win
Execute a popup
Execute a procedure
Display QuickHelp
Display a message
Index lookup

Close window

Read the row

write the row

Clear the farm

Delete the row

Execute or Create Tabb
Intemnet
Publizh Report

v

X
j Scripts...

Send Message to

o Enfity
|5Y5F‘F\DG*5TPF\UEEXE*"STAF\T_MDIEHILD
|]
PBarameters
[D8wW_TEST", ‘@MDIFRAME] &
Return value in
Cantrol | j
Property | ﬂ

oK | Llose | Lpply | Clear | Help ‘

The second method to launch your MDI Child form would be to add another toolbar button. SRP FrameWorks automatically comes with three buttons in
the toolbar that launch three included sample forms. These can be removed, modified, or added onto with new buttons. Use the Frame Manager tool to
configure how the buttons appear:

https://wiki.srpcs.com/display/SRPFrameWorks/FW_MAIN

* Frame Manager =13
| Window Settings || Standard Settings | Set Frame Zettings | shortcutBar Settings

Set Tool Bar Bukbon Setkings

Button Mame Group Number Enabled Tool Tip Graphic Resource Status Bar Comments

1 | PUB_TE_MEW 1| Mo e Mew

2 | PUE_TE_OPEM 1| Mo Open Open

3 | PUE_TE_SAYE 1| Mo Save Save

4 |PUE_TB_DELETE 1| Mo Delete Delete

5 |PUB_TEB_CUT 2| Yes Cuk Cuk

6 |PUB_TB_COPY 2| Yes Copy Copy

7 | PUE_TE_PASTE 2| Yes Paste Paste

g | PUE_TE_OPTIONS 3| Mo Options Options

9 | PUE_TE_FORMOPTS 3 Mo Formopts Farmopts

10 | PUB_TEB_PRIMT 4 | Mo Print Prink

11 | PUB_TEB_PREWIE'W 4 | Mo Prewview Preview

12 |PUE_TE_REPORTS 4| Yes Reports Reports

13 PUB_TB_SAMPLEL 5| Yes Sample Window {Single Page) Sample1

14 PUB_TB_SAMPLEZ 5| Yes Sample Window {Multi-Page Scrollbar) Samplez

15 | PUB_TE_SAMPLES 5| Ves Sample Window (Multi-Page Tab) Sampled

16 | PUB_TB_TEST 6| Yes Test Window SAMPLES Test Window

[[0l 4 l [Apply [}J [Zancel

In our example, another ActiveX button was added to FRW_MAIN using the Form Designer. It does not matter where the button was placed or what size it
is. The Frame Manager automatically configures the toolbar for you based on the information you provide. When FRW_MAIN is launched, the new button
appears in the toolbar:

jlgl_ﬂ

All that is needed now are the necessary sections of code within the FRW_MAIN_EVENTS commuter module that will launch this form. Here is what the
Case statement might look like:

Case Control EQ "PUB_TB_TEST" ; GoSub CLI CK PUB_TB_TEST

Here is what the specific gosub section might look like:
CLI CK. PUB_TB_TEST:

Child = Start_NDI Chi | d("DBW TEST", @V ndow)
return

The third method for launching an MDI Child is to use the Shortcut Bar control. Again, the Frame Manager is used to configure this:

* Frame Manager |:| |E Xl

| window Settings | Standard Settings | Set Frame Settings | ShortcutBar Settings
Enable ShorkcutBar Settings
Property Definition Property Definition
v ‘indow Theme | ListWiewOFfice2003 | Hot Track Stwle | Default
|85 User Access R Animation | Ahways Select Behavior | Mone
,@ Group Access Behavior | Explorer Layout | Default
@ User Lagin Information Group Image Path | application.img4#... | Item Image Path | application.ima#ShortCutI, .
& Helo M Group Frames | 15 Item Frames | 15
12| D HEnEE A Grp Transparent Ikem Transparent
1 Audit Manager Left Margin| 0 Right Margin | 0
_1J Audit Trail Top Margin | O Bottom Margin | O
Between Groups | 0 Control Width | 250
Litilibies | &dd Caption | ves Caption Text
4% Assign Sequential Keys Close Bukton | ¥es Resizable | ves
Ikern
Daka Entry | — —
Property Definition Property Definition
Sample Window {Single Page) Bold Caption | Test Window
Sample Window (Multi-Page Image | 2 ToolTip | Click here ko launch the test win. ..
Scrollbar) Proc, Type | MDIChild Window Proc, Mame | DBW _TEST
Sample Window (Mulki-Page Tabbed) Parameters
Test Window
R k
Eports 3 Add Group] [Add Tkem] [Clear] [Su:nrt grnups] [Sort Ikems]
[o] l I Apply J [Cancel l

With no additional coding necessary, this item will be automatically functional for the end user when the application is launched:

File Edit Sample Admin Utiities Window Help

B~ ¥ 2@ v Olgeg|a
ample d g hbhed
Administrakor
Page 1 |page 2| Page 3
i3y Report Manager o " o=l
184 User Access First Control ||
_@ Group Access
[#8 User Login Infarmatian Qty Part Mo Description 1
(@ Help Manager Comments
L) Audit Manager 1
| L) Audkt Trail)
Liies |
_ 5
“ Assign Sequential Keys
Data Entry | 4
-5 Sample Window (Single Page) 5
-5 Sample Window (Multi-Page Scrollbar)
=5 Sample Windaw (Multi-Page Tabbed) |
5 Iest Windo 7
|

Reports [Click here to lsunch the test window | o
@ User List

B i

Step #3 - Configure the Toolbar Buttons with the Frame Manager

In order to provide a richer user interface experience, SRP FrameWorks was designed to enable and disable relevant menu items and toolbar buttons
based on the status of the active MDI Child form. For instance, it would not make sense to have the Save or Delete buttons enabled if there were no MDI
Child forms open or if the active form didn't have a record loaded. This is another feature that the Frame Manager was designed to configure:

.
#* Frame Manager,

Window Settings | Standard Settings | Set Frame Settings | ShortcutBar Settings
LR DEYY LISER. ACCESS | window Title | Users (FRAMEWORKS)
Frarme Cornponent CREATE READ ACTIVATED CLEAR CLOSE DELETE
1 |PUB_TE_SAYE Mo Full Rights + Record Full Rights + Record Mo] o
Z | PIUE_TE_PRIMT Mo Full Rights + Record Full Rights + Record Mo] o
3 | PIJE_TE_PREWIEWY Mo Full Rights + Record Full Rights + Record Mo] o
4 |PUE_TE_CPEM Yes Yes Yes Yes Mo Yes
5 |PUE_TE_MEW Yes Yes Yes Yes Mo Yes
6 |PUE_TE_DELETE Mo Full Rights + Recaord Full Rights + Recaord Mo Mo Mo
7 | PUE_TE_FORMOPTS Yes Yes Yes Yes Mo Yes
g | MEMU.FILE.SAYE_AS Mo Full Rights + Record Full Rights + Record Mo] o
9 | MEMU,FILE.SAYE Mo Full Rights + Record Full Rights + Record Mo] o
10 | MENU,FILE.PRIMT _TO_FDF Mo Full Rights + Record Full Rights + Record Mo] Mo
11 | MENU.FILE.PRINT_PREWIE'W Mo Full Rights + Recaord Full Rights + Recaord Mo Mo Mo
12 | MENU.FILE.PRINT Mo Full Rights + Recaord Full Rights + Recaord Mo Mo Mo
13 | MENU.FILE.OPEN Yes Yes Yes Yes Mo Yes
14 | MENU.FILE.NEW ‘fes ‘fes ‘fes ‘fes Mo Yes
15 | MENU.FILE.CELETE Mo Full Rights + Record Full Rights + Record Mo] o
16 | MENUL.FILE,CLOSE Yes Yes Yes Yes Mo Yes
17 | MENU,AREY KEYS.DIJPLICATE_RECORD Mo Full Rights + Record Full Rights + Record Mo] Mo
18 | MENULAREY _KEYS.SAVE Mo Full Rights + Recaord Full Rights + Recaord Mo Mo Mo
oK l ’ Cancel] [Delete] [Apply l ’ Copy l ’ Standard

This utility allows you to select any form within the local or inherited applications. The first column identifies which menu and toolbar buttons you want to be
controlled through the Frame Manager. All the other columns represent the settings you wish to apply based on the corresponding event. Here are the
available settings:

Setting Meaning
Full Write | The end user must have full security access to this form (see User Access below) in order for the relevant menu item or toolbar button to be
enabled.
Full Same as 'Full Write' but the form must have a record loaded and locked as well. This would be a common setting for the Save button.
Write +
Record
Full Same as 'Full Write' but the form must have a record loaded as well. The record can be locked or unlocked. This would be a common
Write + setting for the Print button.
Record
(L)
Yes Unconditionally set the relevant menu item or toolbar button to be enabled.
Yes + Same as 'Yes' but the form must have a record loaded and locked as well.
Record
Yes + Same as 'Yes' but the form must have a record loaded as well. The record can be locked or unlocked.
Record
(L)
No Unconditionally set the relevant menu item or toolbar button to be disabled.

Commuter The active form's commuter module will be executed (if one exists) with special event names (FM_CREATE, FM_READ, FM_ACTIVATED,
FM_CLEAR, FM_CLOSE, and FM_DELETE) to allow the developer to provide customized logic. Please note that it is necessary for the
naming convention of FormName_EVENTS to be used for this to work.

The Standard Settings tab allows you to create a default template for your forms. All forms that do not have their own settings will automatically use these
settings. Additionally, if you bring up a form in the Window Settings tab and click on the Standard button, it will copy those settings for the form which can
then be modified as necessary.

Step #4 - Add the Form to the Security Manager

Security in SRP FrameWorks is primarily handled by defining Group profiles. Within each Group, levels of access are assigned to each form, report,
toolbar button, shortcut item, and menu item. Optionally, even access to specific controls within a form can be managed.

Application users are then assigned to a particular Group. Once assigned to a Group, a User has the same levels of access as defined in that Group.
However, if desired, a user's access level can be overridden for specific items.

Items must first be registered in the Security Manager utility. To launch this utility just run the form DBW_SECURITY_MANAGER:

#¥ Security Manager,

Mame Window Name Menu Mame Button Mame ShorkcutBar
1 | Audit Manager DEYW _ALDIT_MAMAGER AUDIT_MAMNAGER Audit Manager
2 | Audit Trail MOW _ALIDIT_TRAIL AUDIT_TRAIL Audit Trail
3 Autka Shutdawn DEW _ALTO_SHUTDOW ALUTO_SHUTDOW
4 | Group Access DEW _GROUP_ACCESS GROUP_ACCESS Group Access
5 | Help Manager DEMW_HELP HELP_MAMNAGER Help Manager
& | Report Manager DEW_REPORT_MAMNAGER REPORT_MAMMAGER Report Manager
7 | Sample 1 DEMW _SAMPLEL SAMPLEL PUB_TE_SAMPLEL Sarmple Window {Single Page)
& | Sample 2 DEW _SAMPLEZ SAMPLEZ PUE_TE_SAMPLEZ Sample Window (Multi-page Scrollbar)
9 | Sample 3 DEW _SAMPLES SAMPLES PUB_TE_SAMPLES Sample Windaow (Multi-page Tabbed)
10 | User Access DEW_USER _&CCESS USER_ACCESS User Access
11 | User Lisk User List
12 | Test Window DEW _TEST TEST PUE_TE_TEST Test Window

0ok] l Apply hl [Cancel

Each column is then populated with the appropriate information as described in this chart:

Column Description
Name This is the user friendly name that will display in the Group and User Access forms.
Window Name | This is the entity name of the form (window) that is being registered in the Security Manager.
Menu Name This is the entity name of the menu item in FRW_MAIN that is being registered in the Security Manager.
Button Name | This is the entity name of the toolbar button in FRW_MAIN that is being registered in the Security Manager.

ShortcutBar This is the name of the Shortcut Bar item in FRW_MAIN that is being registered in the Security Manager.

Because Openlinsight does not have a way of tracking the relationships between forms and any menu items or toolbar buttons that are used to launch
them, it is important that the developer adds these menu and/or toolbar buttons from each form. This will allow the security management system to
properly allow or deny access to all visible ways of launching the form.

If a menu or toolbar button is accidentally omitted from the Security Manager, and the end user launches a form, data changes will still be prevented. This
is because the promoted WRITE and DELETE event handlers make a redundant check to see if the user has the property security access to the form itself.

It should be noted that the Security Manager can also be used to allow or deny access to menu items and toolbar buttons that are not connected to a form.
For instance, perhaps there is a menu item that executes a stored procedure or a report. These types of application elements also need security control,
which is done by simply adding the menu or toolbar button name and leaving the Window Name cell empty.

Since menu items can be access points for sub-menus (these are called top-level menus), an entire menu tree can be made available or protected from
access without the need to register each menu item in the tree. Just register the top-level menu name and grant the appropriate level of access to it.

Step #5 - Add the Form to the Group Access Settings

After a component has been added to the Security Manager it is now available to the Group Access form (which is launched from within FRW_MAIN):

o Group Access Settings |Z||E|rz|

Group Marme | ADMIN » | Description | Administrator Access |

Frare focess | Report Access

Item Mame Tvpe Type of Access

1 | Audit Manager Window | Menu | ShorkcukBar Full Rights Conkrals, .,
2 | Audit Trail Window | Menu | ShorkcukBar Full Rights Conkrals, .,
3 | Auko shutdown Window | Menu Full Rights Conkrals, .,
4 | Group Access Window | Menu | ShorkcukBar Full Rights Conkrals, .,
5 | Help Manager Window | Menu | ShorkcukBar Full Rights Conkrals, .,
6 | Report Manager Window | Menu | ShorkcukBar Full Rights Conkrals, .,
7 | gample 1 Window | Menu | Butbon | ShortcukBar Full Rights Conkrals, .,
g | Sample 2 Window | Menu | Butbon | ShortcukBar Full Rights Conkrals, .,
9 | Sample 3 Window | Menu | Butbon | ShortcukBar Full Rights Conkrals, .,
10| Tesk Window Window | Menu | Butbon | ShortcukBar None

11 | User Access Window [Menu | ShartcutBar Full Rights Contrals, .,
12 | User Lisk ShortcutBar

This image shows the built-in ADMIN group access profile. By default it has access to all components which have been pre-registered in the Security
Manager. However, there is no access to Test Window since it was just registered to through the Security Manager. This means that any users with the
ADMIN group access profile will not yet have access to this item. By default, Groups do not have access to new items registered in the Security Manager.
To give the user access to this item just click on the dropdown button and select the desired access type:

Type of Description
Access
Full Rights User has complete access to this item. If this is a form, the user has the ability to create, read, modify, and delete records.
Read Only User can see but does not have access this item. If this is a form, the user has the ability to read records but not create, modify, or
delete them.
Add/Edit User can create, read, and modify records but not delete them. (Applicable to forms only)
Edit Only User can read and modify records but not create or delete them. (Applicable to forms only)
None User does not have any access to this item. Menus, buttons, and shortcut items will be invisible.

Step #6 - Additional Features: Help Manager, Window Options (a.k.a. Softkeys)

You can use the Help Manager to easily create statusline and context sensitive help for your form and prompts. This form is designed to run from with
FRW_MAIN so that end users can be given access it it. This is helpful if end users are used to document the system as they use it:

B=1ES

¥ Help Manager - Frame Manager

WWindiow: Statusline Help:
Frame Manager w |

Context Menu Manager
Context Menu Test
Control Manager
Zustarmer
Dake
Dake 2
Date Range

Dake Range 2
Graup Access k
Help
Help
Lock Record
Login
Main

—|Print Manager
- Range
Report Lisk
Repork Manager
Reparks
Reporks Qrig
Samplel
Samplez
Sample3
Security Manager
Sequential Keys
Tesk
User Arcess
ser Logins
Windaw Dpkions

| >

Window Help:

&

Options for the entire form (a.k.a. SoftKeys in AREV) can be added using the Window Options utility. This will provide you the ability to assign functionality
to most Alt+Function Key and Shift+Function Key accelerator combinations:

Window Options
Window | RES N
Key Window Dpkion ~
AF1 ser List Report
b’
Clear] ’ Clear all] I O l [Cancel Apply

In the commuter module for DBW_SAMPLER there is skeleton code for a "FORMOPTS" event. This really isn't an event but the commuter module is called
as if it were. Here is where functionality can be assigned for each accelerator.

This code snippet shows how the case logic should appear in the commuter module:

Case Control EQ W ndow
/1 This event is w ndow specific.

Begi n Case
Case Event EQ " CREATE" ; GoSub CREATE
Case Event EQ "VSCROLL" ; GoSub VSCROLL
Case Event EQ "FORMOPTS" ; GoSub FORMOPTS

Here is a copy of the FORMOPTS gosub section as it appears in the DBW_SAMPLE3 commuter module:

FORMOPTS:
/1 A type of SoftKey feature is available for all forms. First run the
/1 NDW W NDOW OPTI ONS form select a window, then add the softkey accel erator
/'l keys and descriptions. These will automatically appear in a popup when the
/| user presses F6 or clicks on the Form Options button on the MD Frane
/1 toolbar. If the end user selects an option fromthe popup or presses the
/| appropriate accel erator keys then a special FORMOPTS event will be sent to
/1 the window s comuter nodule with the accel erator passed into Paramil.
/1 1t is up to the commuter to provide functionality (unlike AREV which
/1 offered a Code and Comrand pronpt in the SoftKey definition form
/1 @V ndow will always be the MDIFrane so the active MD Child needs to
/1 be identified.
W ndow = Get _Property(@V ndow, "MNDI ACTIVE")
Sof t key = Paraml
If SoftKey EQ "F6" then
TypeQverride = ""
TypeOverri de<8> = Get _Property(W ndow, " @ORM OPTI ONS")
TypeOver Ride<28> = 1 ; // Select and highlight 1st
Sof t Key = PopUp(@V ndow, TypeOverride, "W NDOW OPTS")
end

Begi n Case
Case SoftKey EQ "AF1"
/1 User pressed Alt-F1
Msg(@V ndow, "User pressed Alt-F1")

Case SoftKey EQ "AF2"
/] User pressed Alt-F2
Msg(@V ndow, "User pressed Alt-F2")

Case SoftKey EQ "SF1"
/1 User pressed Shift-F1
Msg(@V ndow, "User pressed Shift-F1")

Case SoftKey EQ "SF2"
/1 User pressed Shift-F2
Msg(@V ndow, "User pressed Shift-F2")

End Case
return

	Adding a Form to SRP FrameWorks

