
DSMethod Function

Description

Executes a DataSet Object method; the DataSet Object is specified by the handle passed.

Syntax

flag =   DSMethod (hDS, method, arg1, arg2, arg3, arg4, arg5)

Parameters

The DSMethod function has the following parameters:

Parameter Description

hDS Handle to the DataSet.

method See   below.methods

arg1...arg5 Method specific.

Method Description

DS_ADD
REF$

Increment DataSet reference count. For example, if you programmatically supply the handle of an existing DataSet in the   eDSOINSTANCE
vent on a form, you must increment the reference count of the DataSet to avoid it being destroyed when the form closes.

  hDS [in] The DataSet Object handle.

DS_APP
END$

Appends the default row to the end of the data set.

DS_APP
END_WO
RK$

Appends the workspace row to the data set.

DS_CLE
AR$

Unconditionally clears the data set.

DS_COM
MIT$

Commits changes made to the data set to the connected data source.

DS_COP
Y$

Copies the rows from one DataSet to another. The DataSets must have an identical structure: the number of columns and definition of each 
column must match.

  hDS [in] DataSet to copy to.

  arg1 [in] DataSet to copy from.

DS_DEF
AULT_W
ORK$

Sets the workspace values to the data set default values.

DS_DEL
ETE$

Deletes the current row in the data set.

DS_DES
TROY$

Decrements the reference count for a DataSet and destroys the DataSet if the reference count drops to zero; if the DataSet uses a 
Connection Object, it releases the Connection Object (which typically will simply decrease the connection's reference count).

  hDS [in] The DataSet Object handle.

  Error returned for an invalid handle or if an error occurred destroying the object.

DS_EXE
CUTE$

Executes the select method and retrieves the results.

  arg1 [in] Execution type.

  arg2 [in] Retrieval type.

DS_EXT
RACT_W
ORK$

Copies the current row in the data set to the workspace.

https://wiki.srpcs.com/display/Events/DSOINSTANCE


DS_FILT
ER$

Removes all rows from the current view that do not meet the specified criteria; the rows are not deleted or modified in any way and can be 
restored to the view using the DS_RESETFILTER$ method; the DS_FILTER$ method can be used to further filter an already-filtered 
DataSet as well.

  hDS [in] The DataSet Object handle.

  arg1 [in] The filter expression as it would appear in the "where" portion of a SQL script, with a few restrictions: each clause is in the form 
"column operator constant" where the column is the column name, the operator is "=", "!=", "<", ">", "<=", ">=", "like", "is", "is not", "in", or 
"not in"; "NOT" can be applied to a clause, multiple clauses can be connected with the logicals "AND" and "OR" and grouped hierarchically 
with parenthesis.

  arg2 [in] TRUE resets the existing filter before applying the new filter, optional, defaults to FALSE (same as using the DS_RESETFILTER$ 
method before using the DS_FILTER$ method).

  arg3 [in] TRUE to create a case-insensitive filter, optional, defaults to FALSE.

  arg5 [out] The BASIC+ code created to implement the filter is returned for debugging purposes.

DS_FIND$ Searches the DataSet for a row meeting the specified criteria

  hDS [in] The DataSet Object handle.

  arg1 [in] Search criteria in the same format as used for DS_FILTER$.

  arg2 [in] Find direction, optional, defaults to forwards (for more information, search for "FD_" in the insert record DSXO_API).

  arg3 [in] TRUE to create a case-insensitive filter, optional, defaults to FALSE.

  arg5 [out] The BASIC+ code created to implement the search filter is returned for debugging purposes.

DS_FIND
KEY$

Using the DataSet's unique key index, DS_FINDKEY$ searches the DataSet for a row with a key matching the key in the DataSet work 
row. If a matching key is found, the current row is changed to the row with the matching key and success is returned. Otherwise, an error is 
returned.

DS_FIND
NEXT$

Searches the DataSet for the next row meeting the criteria specified to DS_FIND$ and returns TRUE if a match is found.

  hDS [in] The DataSet Object handle.

  arg1 [in] Find direction, optional defaults to forward (for information , search for "FD_" in the insert record DSXO_API).

DS_FIND
PREV$

Searches the DataSet for the previous row meeting the criteria specified to DS_FIND$ and returns TRUE if a match is found.

  hDS [in] The DataSet Object handle.

DS_GET
ERROR$

Retrieves all pending Connection Object errors from the DS/XO API.

  hDS [in] DataSet Object handle (or 0 to get API-level errors such as, DSCreate() which does not have an hDS).

  arg1 [out] Local error list (@VM-delimited).

  arg2 [out] Local severity list.

  arg3 [out] Native error list.

  arg4 [out] Native severity list.

  arg5 [out] Error text list.

  Error returned if no errors were pending.

DS_INSE
RT$

Inserts a row at the current position in the data set.

DS_INSE
RT_WOR
K$

Inserts the workspace row at the current position in the data set.

DS_LIMIT
VIEW$

Allows filtering of the current view by providing a list of row numbers to keep in the current view. This operation can be undone by useing 
the DS_RESETFILTER$ method.

  hDS [in] DataSet to limit the view for.

  arg1 [out] An @fm-delimited list of row numbers to keep in the current view.

DS_RES
ETARG$

Resets specified arguments to their default values.



  arg1 [in] Argument name/number or 0 (all).

DS_RES
ETDEFA
ULTS$

Reset DataSet column default values.

  hDS [in] The DataSet Object handle.

DS_RES
ETFILTE
R$

Removes any filter from the current view, thus making the complete view available.

  hDS [in] The DataSet Object handle.

DS_RES
ETSCRIP
T$

Resets specified scripts to their default values.

  arg1 [in] script ID or 0 (all).

DS_ROL
LBACK$

Undoes data set changes since the last commit.

DS_SOR
T$

Orders the DataSet based on the passed sort criteria.

  hDS [in] The DataSet Object handle.

  desc] [, colname [asc|desc]] ..."

DS_TRA
NSLATEF
LAG$

Translates the bit-masked flag returned from the DS/XO API into TRUE$ for success and FALSE$ for failure; success includes both 
success and success with information (meaning possible pending messages) and failure includes an error (meaning possible pending 
messages), an invalid handle, and no more data.

  arg1 [in] The flag value returned from the DS/XO API

  Error returned if the DS/XO API flag value did not correspond to success.

DS_UPD
ATE$

Updates the database with all of the changes made to the DataSet; it is the first phase of a 2-phase DataSet commit and is repeatable; 
after a successful DS_UPDATE$, DS_COMMIT$ is used to resolve the changes to the DataSet itself so that the DataSet matches the state 
of the database (phase 2).

  hDS [in] the DataSet Object handle.

DS_UPD
ATE_WO
RK$

Copies the workspace row to the current row of the data set.

Returns

True for successful execution or   for failure.False


	DSMethod Function

