Creating a Custom Event

Introduction

Openlnsight provides developers with many ways to create functionality that doesn’t come “right out of the box.” Unfortunately, some of these techniques
often go undocumented. Creating custom events is one way to add wonderful features to an application. However, few developers consider them because
they require the use of other features of Openlnsight that are equally neglected: the ability to capture Window's messages and the use of promoted events.
This document will provide step-by-step instructions for implementing your own custom events. Specifically we will demonstrate how to create a right-click

event for Openlnsight controls, including the edittable. While Window’s messages and promoted events will be discussed, some basic understanding of
these areas is expected.

Getting Started

If you are already familiar with creating promoted events and capturing Windows messages then you can go straight to Putting It All Together.
Obviously the most important tool is a developer’s version of Openinsight. Everything discussed in this document will work with Openlnsight v3.5 and later.
There are three general steps necessary to create a custom event and make sure it responds automatically:

1. Create the custom event by using the EventDesigner tool.

2. Identify the Windows message needed to trigger the custom event.

3. Use a promoted CREATE and WINMSG event to handle all of the plumbing.

Accessing the EventDesigner can be done through the Ul Workspace menu (Tools -> Design Events) or by running the EVENTDESIGNER window from
the Application Manager:

Event Designer

’i% Event Name | Event Parameters | Endorce L Add
Ed ACTIVATED No [
ab | [T] | [ARRANGEICOI No [Bemove
- BUTTONDOW! sDownyDownalpylp CliKep Sk Mo [
| @ BUTTONUP sDownyDownslpylpChilkep Sk Mo Save
—— | ICALCULATE CiriColurnn Mo
(ox) | [fif | |cascapE No =
e CLEAR bS5 avek ey bSuppress's/aming b Mo PE—
wox] || |CLOSE CancelFlag Yes Help
=1 CREATE CreateParam Yes
% DDEEROR Mo
E ' o) DELETE Mo
DSOABRS D50Id Rowtum RefreshF arm Mo
! E DSOCLEAR D500d,Preservedogs Mo
(= | SSS I DSOCOMMIT D50 d E kecutedifterCommit, Commi Mo -

Custom events are nothing more than convenient places to put programming logic unless they are triggered automatically by Openlnsight. This is where
familiarity with Windows messages and how to capture them come in.

Applications are constantly receiving messages from the Windows operating system. These messages inform the application of a request (like “please
shutdown”) or of an action (like “the letter ‘k’ was pressed”). These messages are identified uniquely by an ID number but are usually referenced in
programming languages through equates (see the References section below). However, not every message is necessarily important to every application.
Consequently messages can be ignored. In fact, all messages are ignored by default. Only those messages that applications are designed to listen for can
do anything, and, in fact, it is up to the programmer to decide what the application will do when it receives that message.

Fortunately, Revelation has built in many of the most critical Windows messages into Openinsight so that our applications respond without any additional
work on our part. For instance, whenever we move an application window around or drag one window over another a WM_PAINT (15 decimal, 0xO00F
hex) message is sent. This lets the application know that the desktop has changed in such a way that unless it redraws itself it will not look correct. For
instance, here is a before-and-after example of what an application (the one in the background) will look like if the WM_PAINT message is ignored:

Before Paint is Moved After Paint is Moved

& L itilbed - Bolepsd = U el - Wolepad
Fle Cab Faval Hel

Fiz Edk Fomat

Fla Bdt vew Imagn Colars Halp
1=

——wmmdvqﬁmw
|

O]~ 3 =] %]

|

El e Ciaaaa
For Hia, cick Halp Topics on Hha Halp Mara

Many of these messages are turned into Openlinsight events so that the developer has a way to add additional logic to what Openinsight will already do or,
in some cases, replace it. For instance, when a letter on the keyboard is pressed a WM_CHAR message is generated (258 decimal, 0x0102 hex).
Revelation listens for this message and in turn calls the CHAR event of the edit control which has focus. This allows the developer to add custom logic and
create features like autofill.

Sometimes the developer needs more than the ability to add custom logic. Just because a request has been made, the application might be doing
something very important that shouldn’t be interrupted. In these cases, the developer is allowed to use the event to replace (or simply precede) what
Openlnsight would normally do. A common example is when an application receives the WM_CLOSE message (16 decimal, 0x0010 hex). When
Openlnsight receives this message it calls the CLOSE event of the active window. A developer now has the ability to process logic before or instead of
allowing Openlnsight to close the window.

There are hundreds of messages generated by Windows. Most of them are unimportant to the developer and therefore Revelation chose not to create an
event for them. However, as developers and their applications become more advanced there are situations where listening for certain messages would be
useful. Fortunately, Revelation has provided us a way to listen for messages so that we can hook on our own logic.

By using the QUALIFY_EVENT message (cf. Send_Message function) a developer can now capture specific Windows messages for a control or window
(an Openlinsight window is a control for our purposes). This code is usually placed in the CREATE event of the window (or in the promoted CREATE event
as we will demonstrate later):

: Event Handlers for window UNTITLED

File Edit Search Help

=gl ¥ (Ll2lalte] == Sl8 (2
Events: |CREATE gl
Function CREATE(CtriEnt]d, CtriClassld, CreateParam)

S$insert LOGICAL

Declare function Send Hessage

Equ WM_MNCPAINT to 133 ; * Notification that the non client area
of a vindov nesd=s to be repainted
#* 0x0085 hex

Equ WH_HOUSEHOVE to 512 ; = Hotification that the user has moved
the mouse
(x0200 hex

rv = Send Message(CtrlEntId., "QUALIFY_EVENT®, WH_HCFAINT. True$)
rv = Send_Message(CtrlEntId. “QUALIFY_EVENT®. WM_MOUSEMOVE. True$)

RFETURN 1

When captured messages are received, Openlinsight makes a call to the WINMSG (“Windows message”) event for the relevant control. Within this event
the actual message ID can be detected (which is important if multiple messages are being captured) so the appropriate logic gets executed:

' Event Handlers for window UNTITLED

File Edit Search Help

ololalel (=l=F &8

Events: |wINMSG =l
Function WINMSG] ChrlEntld, ChriClassld,hiWnd, Message, wParam, [Param)

Equ WH_NCPAINT to 133 ; #® Hotification that the non client area
of a window needs to be repainted
(0x0085 hex

Equ WH_MOUSEMOVE to 512 ; # Hotification that the user has mowved
the mouss
0x0200 hex

L]

Begin Case=
Case Message EQ WM_NCPAINT
/% Add logic hers =7

Case Hessage EQ WM_MOUSEMOVE
s# jdd logic hers #-

End Cass
RETURN 1

If you will notice, there are four parameters (in addition to the regular CtrlEntld and CtriClassld) that are passed into the WINMSG event: hWnd, Message,
wParam, and IParam. From the above example we see that the Windows message ID is passed through the Message parameter. wParam and |Param are
also provided by Windows and contain additional information relevant to the Windows message being received. For example, the WM_MOUSEMOVE
message by itself only tells Openinsight that the mouse is moving over the window. In order know whether a button was clicked or where the mouse is
exactly (i.e. X and Y position) one must look within the wParam and IParam parameters. However, binary algorithm must usually be applied against these
values before the information is meaningful.

Once we have captured and processed logic for those Windows messages that we are interested in (and we know it works), we need to decide whether
we want this new “feature” to be specific to certain windows only or available to all windows within the application. If it is the latter choice (and usually it is)
then this is where promoted events come in handy.

If you are generally unfamiliar with promoted events then we highly encourage you to read Andrew McAuley’s The X Events article (see the References sec
tion below). This article has remained the standard primer on the subject and will provide a more general explanation than what will be discussed here.

Since capturing Windows messages uses both the CREATE and WINMSG event, it stands to reason that these events should be promoted (SRP
recommends using promoted events for virtually everything). However, promoted events are notoriously difficult to maintain and debug. Therefore another
recommendation is to design your promoted events so that they call a stored procedure to execute your logic. This is similar to having a symbolic
dictionary call a stored procedure rather than storing the logic internally.

Here is what SRP uses to create their promoted CREATE event:
Conpi l e function EXAMPLES Create_ Owin(CrlEntld, Crldassld, CreateParam
$i nsert APP_| NSERTS
Decl are function Pronoted_Events
| *
Enter the following into the Exec |ine whenever this event gets updated:
RUN COPY_ROW " SYSOBJ", "$EXAMPLES CREATE_O W N*EXAMPLES", " SYSREPOSEVENTEXES', "EXAMPLES* CREATE..O W N+*",6 "2"
*/

Return Pronpted_Events(Create$, CtrlEntld, CrlCassld, CreateParam

A few notes on the above code:

1. The name of the function is arbitrary. We use a name that is similar to the actual name of the promoted event for organizational purposes.
You can use whatever name you wish as long as you put the correct name in the “RUN COPY_ROW?" statement.

2. APP_INSERTS contains the equates we use to assign our promoted events a numerical value for easy routing purposes. For instance,
“Equ Create$ to 1". See the References section for the full list.

3. When the program is compiled, the “RUN COPY_ROW?" statement should be copied to the Exec line of the System Editor and executed.
This moves the appropriate object code for this function from the SYSOBJ table into the SYSREPOSEVENTEXES table. At this point the
promoted event exists in your system.

4. In our promoted events we call a “commuter module” function called Promoted_Events (an obvious name for obvious reasons.) Sample
code for this function will be shown later. Remember, events are essentially functions (returning a 1 or 0) and therefore our
Promoted_Events function returns a 1 or 0 to provide appropriate event chaining.

Our WINMSG event is promoted using a similar stored procedure:

Conpi l e functi on EXAVPLES_ W NMSG Ow n(CrlEntld, Crldassld, hwd, Mssage, wParam | Param
$i nsert APP_| NSERTS
Decl are function Pronoted_Events
/*
Enter the following into the Exec |ine whenever this event gets updated:
RUN COPY_ROW " SYSOBJ", "$EXAMPLES W NVSG O W N* EXAMPLES", " SYSREPOSEVENTEXES", "EXAMPLES*W NMSG. . O W N+*", "2"
*/

Return Pronoted_Events(Wnnsg$, CrlEntld, Crldassld, hwd, Message, wParam | Param

Finally, our Promoted_Events function handles the logic that we previously had placed in separate event script code:

Conpi | e function Pronoted_Events(Instruction, CGrlEntld, Crldassld, Paraml, ParanR, ParanB8, Paranmd, Paranb,
Par ang,
-> Paranv, ParanB)

$i nsert APP_| NSERTS
$insert LOG CAL

Equ WM _NCPAINT to 133 ; * Notification that the non client area
* of a window needs to be repainted
* 0x0085 hex

Equ WM MOUSEMOVE to 512 ; * Notification that the user has noved
* the nouse
* 0x0200 hex

Decl are function Send_Message

I f Assigned(Paranl) else Paranl = ""
I f Assigned(Paran2) else Paran2 = ""
I f Assigned(ParanB) el se ParanB
I f Assigned(Paramd) else Paramd = ""
I f Assigned(Paranb) else Paranb = ""
I f Assigned(Parang) else Parant = ""
I f Assigned(Paranv) else Paranv = ""
I f Assigned(ParanB) else ParanB = ""

Wndow = Field(CrlEntld, ".", 1)[1, "F*"]
Control = Field(CrlEntld, ".", 2)

* 1.8. ..
On Instruction GoSub CREATE . . . WNMSG .

If Assigned(Ans) else Ans =1
Return Ans
CREATE:

Transfer Paranl to CreateParam

rv = Send_Message(Ctrl Entld, "QUALIFY_EVENT", WM NCPAINT, True$)

rv = Send_Message(Ctrl Entld, "QUALIFY_EVENT", WM MOUSEMOVE, True$)
return
W NVSG

Transfer Paraml to hWd

Transfer ParanR to Message
Transfer ParanB to wParam
Transfer Paramd to | Param

Begi n Case

Case Message EQ WM NCPAI NT
/* Add | ogic here */

Case Message EQ WM MOUSEMOVE
/* Add | ogic here */

End Case

return

As should be evident, this “commuter module” approach towards managing promoted event logic offers many advantages to developers. Changes can be
made rather quickly and logic can be debugged easily. Another benefit is the ability to see different event's code in one place. This is helpful, especially in
our code above, where the contents of one event are directly linked to another.

With these basic components under our belt we are now ready to create a functional custom event.

Putting It All Together

One custom event that we use often is RightClickUp. Normally we use this event to implement context menus for our controls, especially edittables. In
fact, one could easily create a ContextMenu event (in lieu of or in addition to the RightClickUp event) using the same steps. Since RightClickUp is a more
generic reference we will stick with this name and let you decide what to do with the event yourself.

Our first step is to create the event using the EventDesigner tool. This part is easy. Clicking the “Add” button will bring up a message box where you enter
the name of the event:

Event Designer =
Event Name | Event Parameters | Enforce Add
% ACTIVATE & - — &
TR e vent Designer 8 ="
BUTTOND . — —
(3 | (e) |[BUTTONU Q?) Enter the event name to add. Save
CaLCuLAl
(i || cascane Bz
CLEAR
SRR [RIGHTCLICKUA |
= CREATE Help
ENENETE; ok | Cancel |
E no DELETE
DSO0ABS OsOTd RowHum Reffeshfom Mo
! E DSOCLEAR D50ld.Preservedtgs Mo
DSOCOMMIT DS0Id.E secuted e ommit Lommi Mo -

Openlnsight will ask you to confirm this action, so make sure you click “Yes” when prompted. Then your new event class will be in place (scroll down to
see it since events are stored in alphabetical order):

’i&l Evert Name | Event Parameters | Enforce Add
=8 B=]) [GeFNEXT No |
ab | []| |UBFPREV No Remove
GQEFRUM Mo
[| (o) | |READ s Save
HiaH TCLICELI Mo —_—
)| [l | [sizE . Width Height Yes Close
SLBMIT Mo
o] m SYSMSG MszoCode, CancelFlag StatCode Mo Tk
TILE Orientation Mo
E % TIMER Mo
E oo VALIDERR Enoiinfo Mo
WSCROLL Wahee Mo
WINMSGE hwnd, Meszage, wParam, Param Yey [
n E WRITE ez | *

However, there are no “Event Parameters” entered for our custom event. Obviously Openinsight doesn’'t know what these should be so we need to edit the
cell and add our own. These can be named anything we want but they should be meaningful and we should also be certain that whatever information they
should contain is within our ability to provide.

For our RightClickUp event we will use the following parameters:
XPosDesktop = The X-position of the cursor relative to the upper left corner of the desktop
YPosDesktop | The Y-position of the cursor relative to the upper left corner of the desktop
CPosControl = The X-position of the cursor relative to the upper left corner of the current control

YPosControl | The X-position of the cursor relative to the upper left corner of the current control

Finally, if you plan on promoting your new custom event (something we highly recommend you do), then you need to change the “Enforce” flag from “No”
to “Yes”. When everything is done your EventDesigner window should look like this:

Event Name] Event Parameters | Enfarce Add
% QBFLAST No |a
ab | [] ||QBFNEXT No Remave
® QEFPREV Mo —_—
0 QEFRUN Mo ave
READ Yes 2
i il RIGHTCLICKUI| XPosDeskiop, YPosDesktop, XPc| ™ Yes | Close
SIZE .y Width, Height Yas _—
M 3 T No Help
u SYSMSG MsgCode CancelFlag StatCode Mo
% TILE Onentation Mo
E o0, TIMER Mo
VALIDERR Emoiindo Mo
B E WVSCROLL Walue Mo =
WINMSG Hwnd, Message, wPatam, [Param = Yes |=

One last comment before we leave the EventDesigner tool. Our custom event needs to be created for each control that needs this functionality. So far all
we have done is create a RightClickUp event for the Window control. In order to enable this event for other controls we need to select the appropriate
control using the control palette on the left and repeat the above steps.

Our event is now officially recognized by Openinsight. To confirm this, just open a window in the Form Designer, go to the Event editor (or QuickEvent
dialog) and list the available events. You should see an entry for RIGHTCLICKUP:

QuickEvent for RIGHT x|
Event;
:I ~ Send Message lo:

RIGHTCLICKLIP -

CEFFREY = & Entity Control/Window Accept I
QEFRILM I E

READ

Close |

SlZE Message:

SLIBMIT =
SYSMSG f | Zoripls...
TILE = y

Parametess:

TIMER

VALIDERR o T B _He |

Imdex lookup

Close wandow Clear |

Read the row — Reburn value inc

Wnibe the row

Clear the form ot -

Delete the now Sk I —I

----------------- Intemet ¥ Fropeny. | |

If you go into the Script editor for this event you will see the event and all of the parameters that were defined with the EventDesigner (pretty cool huh?):

: Event Handlers For window control

Fil= Edit Search Help

Llolale] (=] 2]

Events: [RIGHTCLICKUR =]
ction RIGHTCLICKUP(CtrlEntid, CiriClassld, XPosDeskbop, YPesDesktop, XPosControl, YPosControl)

I
RETURN 0

Of course at this point our custom event is merely a place to put our code, similar to the OMNIEVENT. It is up to the developer to actually call this event.
This is where our knowledge of Window’s messages comes in handy.

As it turns out, there are several ways to detect if the end user is right-clicking their mouse. If we look through our list of Window's messages we see a
WM_RBUTTONUP (517 decimal, 0x0205 hex) message that would appear to do the job very nicely. Unfortunately, the edittable control does not respond
to (or, more accurately, does not pass through) this specific message. Therefore, an alternative message must be found.

Fortunately other messages will work with edittables. SRP prefers to use WM_SETCURSOR (32 decimal, 0x0020 hex). This message is a “notification that
the mouse cursor is moving within a window”. However, the IParam parameter will also tell us which, if any, mouse buttons were being clicked at the same
time.

So now we need to modify our promoted CREATE event (refer to Getting Started above to see how SRP manages promoted events) so that this message
is captured for all controls (including the window):

CREATE:
Send_Message(@V ndow, " QUALI FY_EVENT", "0x0020", 1)
Crls = Get_Property(@\Vndow, "CTRLMAP")
NuntCtrls = Count(Ctrls, @M + (Crls NE"")
For Loop = 1 to NunCtrls
Send_Message(Ctrl s<Loop>, "QUALIFY_EVENT", "0x0020", 1)
Next Loop
Return

However, if we leave the code “as is” then we will have to add logic to the WINMSG event of every window and control that needs this functionality. An
ideal solution would be to route each control’s local WINMSG event to a common, i.e. promoted, WINMSG event. Again, we'll use the QUALIFY_EVENT
message to accomplish this. Note the changes (in bold) to our promoted CREATE event code below:

CREATE:
Transfer Paraml to CreateParam

Send_Message(@V ndow, "QUALI FY_EVENT", "0x0020", 1)

Send_Message(@V ndow, "QUALI FY_EVENT", "WNMSG', 1: @M 6:"*": @\PPI D<1>:"*W NVSG . O W N*")
Crls = Get_Property(@V ndow, "CTRLMAP")
NuntCtrls = Count(Ctrls, @M + (Crls NE"")
For Loop = 1 to NuntCtrls
Send_Message(Ctrl s<Loop>, "QUALIFY_EVENT", "0x0020", 1)
Send_Message(Ctrl s<Loop>, "QUALIFY_EVENT", "WNWVSG', 1: @M 6:"*": @\PPI D<1>:"*W NMBG . O W N*")
Next Loop
Return

QUALIFY_EVENT has two purposes: first, to capture a Window’s message for use in an Openlinsight application, and second, to route one event to
another. In the two lines we added above, we are telling Openlinsight to route each control’s local WINMSG event to our promoted WINMSG event. This
allows us to manage all of our Windows message logic in a single place.

Perhaps you are wondering, “Why not use QUALIFY_EVENT to route these local WINMSG events to local (or promoted) RIGHTCLICKUP events?” Good
question. There are two answers. First, because WM_SETCURSOR only means that the mouse isbeing used, it doesn’t automatically mean that any
buttons were clicked. Second, if multiple Window’s messages are being captured you will want to use the WINMSG event to branch out accordingly.
Therefore, our WINMSG will start out looking like this:

W NVSG
Transfer Paraml to hWhd
Transfer ParanR to Message
Transfer ParanB to wParam
Transfer Paramd to | Param

Begi n Case

Case Message EQ WM SETCURSOR ; * 32 deci mal, 0x0020 hex
/* Add | ogic here */

End Case

Return

As previously mentioned, the WM_SETCURSOR message is sent whenever the mouse is being used. Therefore we must use one of the special
parameters (IParam in this case) to determine exactly what is happening with the mouse. IParam is a double-word in which the high-order word contains
the message ID (i.e. WM_LBUTTONUP, WM_RBUTTONUP, etc.) of the specific mouse action. If this doesn’t make sense then don’t worry, just review the
changes to our promoted WINMSG event:

W NVSG
Transfer Paraml to hWhd
Transfer ParanR to Message
Transfer ParanB to wParam
Transfer Paramd to | Param

Begi n Case

Case Message EQ WM SETCURSOR ; * 32 deci mal, 0x0020 hex
/* Mouse activity is happening */

MouseMessage = Int(lParam/ 65536) ; * Check to see if a nouse button was pressed
Begi n Case
Case MouseMessage EQ WV _LBUTTONDOMN

/* Left nouse button is down */

Case MouseMessage EQ WM _LBUTTONUP
/* Left nouse button is up */

Case MouseMessage EQ WV _RBUTTONDOMN
/* Right nouse button is down */

Case MouseMessage EQ WV _RBUTTONUP
/* Ri ght npuse button is up */

Case 1
/* Mouse is noving */

End Case

End Case

Return

From this point we can create custom handling of other mouse activity very easily. But for now we will stay focused on our RightClickUp event. Before we
can do this, however, we need to add logic that tells us where our mouse position is. See below for how this is done (for readability, we have removed the
non-relevant mouse message statements.):

W NVSG
Transfer Paraml to hWhd
Transfer ParanR to Message
Transfer ParanB to wParam
Transfer Paran¥ to | Param

Begi n Case
Case Message EQ WM SETCURSOR ; * 32 decinmal, 0x0020 hex
/* Mouse activity is happening */

MouseMessage = Int(lParam/ 65536) ; * Check to see if a nouse button was pressed
Begi n Case
Case MouseMessage EQ WV _RBUTTONUP
/* Ri ght npuse button is up */

MousePos = Bl ank_Struct (" PO NT")
rv = Get Cur sor Pos(MousePos)
XYDesktop = Struct_To_Var (MousePos, "PO NT")
hWwhd = Get _Property(CirlEntld, "HANDLE")
rv = ScreenTod i ent (hwad, MousePos)
XYControl = Struct_To_Var(MusePos, "PO NT")
XPosDeskt op = XYDeskt op<1>
YPosDeskt op XYDeskt op<2>
XPosControl = XYControl <1>
YPosControl = XYControl <2>
End Case

End Case

Return

We will not spend time in this document to explain everything that was just added above. That is a subject for another write up. However, 16-bit versions of
Openlinsight do not have the ScreenToClient function. This Window's API function must be added by editing the DLL_USER record in SYSPROCS or by
creating your own record (done from the SYSPROG application). Its contents should look like this:

USER
VO D PASCAL ScreenTod i ent (USHORT, LPCHAR)

Once this has been created, enter the following from the System Editor's Exec line:

RUN DECLARE_FCNS “DLL_USER’

If you don’t use the DLL_USER record then replace the name in the above command with the actual record name that you will use.

Now we are ready to make our final connection by using this captured right-click message and the calculated position of the mouse cursor to call our
RightClickUp event. Then we will finally have a true custom event that launches automatically. Fortunately Openlnsight provides two functions that allows
developers a way for calling events from within a stored procedure: Send_Event and Post_Event.

Either one can be used, but depending on the nature of your event one may be more appropriate than the other. Send_Event tells Openlinsight to call the
event as soon as possible (i.e. it puts it next in call stack to be processed). Post_Event tells Openlinsight to call the event after all other items currently in
the call stack have been processed. For our purposes we use Send_Event, as demonstrated below:

W NVSG
Transfer Paraml to hWhd
Transfer ParanR to Message
Transfer ParanB to wParam
Transfer Paramd to | Param

Begi n Case

Case Message EQ WM SETCURSOR ; * 32 deci nal,
/* Mouse activity is happening */

MbuseMessage =
Begi n Case

Case MouseMessage EQ WV RBUTTONUP

/* Right nouse button is up */

Int(l Param/ 65536) ;

MousePos = Bl ank_Struct (" PO NT")

rv = Cet Cur sor Pos(MousePos)
XYDesktop = Struct_To_Var (MousePos,
hwWwhd = Get_Property(CtrlEntld, "HANDLE")
rv = ScreenTod i ent (hwhd, MousePos)
XYControl = Struct_To_Var (MousePos,
XPosDeskt op = XYDeskt op<1>
YPosDeskt op = XYDeskt op<2>
XPosControl = XYControl <1>
YPosControl = XYControl <2>

rv = Send_Event (CtrlEntld,
-> YPosControl)

"Rl GHTCLI CKUP",

0x0020 hex

"PO NT")

PO NT")

XPosDeskt op,

End Case
End Case
Return

* Check to see if a nopuse button was pressed

YPosDeskt op, XPosControl,

If you develop multiple applications with the same copy of Openlinsight we suggest putting your promoted events in the SYSPROG application. This will
allow all inherited applications to benefit without having to replicate your logic for each application.

Our final step is to make it possible to deploy our custom events. Since promoted events are not identified within Openinsight’s repository, like control-
specific events are, we must create our own repository pointer. We begin by selecting the Application Manager's Entity -> New menu:

Eﬂﬂnenlnsiu ht for Workgroups - EXAMPLES

Create New Entity

x|
o]
Eamull
_tep |

File | Entity Search ‘View Tools Development H MHew
O i
— AR " Documant Entity
g Delete. . (Peinim Enily
& o o R
Execitel e e

ﬁ Relate Lised-By Entity E!
= Aelate Uses Entity... ﬂ

I o

i elske Mnrrment Fakity

Defining new entity in the application.

Click on the OK button and the New Entity dialog box will appear. Double-click on the Application Rows line in the entity name listbox:

New Entity

— MNew entity name

Appl EXAMPLES il
ication;
Type/Class: APPROW/ I_E}MPLES
9] QuickHelp Messages - Tik
Apphication Fows I
@] Data source —1 | Subkey
@] Database component I
#] Compiled components Atibute
@] Databaze tem -
#] DLLs [Dynamac Link Librane VM Shareable
@ Documents - W Publishable
Entity:
|

|x

Aoress F errmt,

|pdate Fermit

Drescrption

Application Rows are generic pointers that allow the developer to create a repository entity for any record in any table. Therefore, they are useful for more
than deploying promoted events. All that we need is to enter in the correct naming conventions that Openlinsight expects:

Entity Table:KeyID (Note, if KeyID is a multi-part key then use an underscore instead of an asterisks.)
Title Anything descriptive about this entity.

Sub-Key = KeylID (This KeyID should be the true KeyID of the record, including asterisks.)
For our RightClickUp event we entered the following:

Entity SYSREPOSEVENTEXES:EXAMPLES_RIGHTCLICKUP..OIWIN_
Title Promoted Right-Click Up Event

Sub-Key = EXAMPLES*RIGHTCLICKUP..OIWIN*

Mew Entity B EI

— Hew entity name Py e
Application: EXAMPLES
Type/Class: APPROW/ JEXAMFLES
Title:
|Promoted Right Click Up Eve Help
ot Access Pemit
gﬂ'-’h_;*; component [EXAMPLES*RIGHTCLICKUP —— :
ompiled comparents
Database item Attiibute M
DLLs [Dynamic Link Librane ¥ Shareable Description...
- 21 | ¥ Publishable i S e
E niity:

|SYSFIEPEISEVENTEXE 5:EXAMPLE

Now we can use the deployment tool of our choice (e.g. RDK or Check-Out) to distribute our promoted event:

ZARepository Yiew Editor <1 > h =101 =|
‘Working Search Critenia 1 Wiew Ok
Enlities Changed Since .. [Emtiies i Cumment &ppcation
Entitiez Ulzed By Resuk List Selections
El’iﬁlits Using... | = W Publishable Ertibes
L) 3

Datsbase component
Images

Mezzage Boves - -
[] ¥ 4| | *

Congratulations, you now have a custom event that works like an “out of the box” Openlinsight event! Even though it took some work to get here, most of

the ground work is in place for future custom events that you may want to consider (especially if they are mouse related). Whatever your imagination can
think of, we hope that this has been a helpful and informative document.

2]
Campiled componenls 0 3
Data powce
=
X

References

Further information we think will be helpful are listed here for your convenience:

1. Documentation on Window's messages is usually available through a Microsoft Windows Software Developer’s Kit (SDK). This would include Microsoft
C++, Microsoft Visual Basic, and Borland Delphi. Information can also be found within independent Windows API books. Our library has The Waite
Group's Windows API Bible (now out of print) and Windows NT Win32 SuperBible. There are many others available as well as plenty of online material.
Here is a list of those that SRP uses:

Equ WM_CLOSE to 16 ; * 0x0010

Equ WM_SYSCOLORCHANGE | to 21 ; * 0x0015

Equ WM_SETCURSOR to 32 ; * 0x0020

Equ WM_COMMAND to 273 ; * 0x0111
Equ WM_LBUTTONDOWN to 513 ; * 0x0201
Equ WM_LBUTTONUP to 514 ; * 0x0202

Equ WM_LBUTTONDBLCLK to 515 ; * 0x0203

Equ WM_RBUTTONDOWN to 516 ; * 0x0204
Equ WM_RBUTTONUP to 517 ; * 0x0205
Equ WM_USER to 1024 ; * 0x0400

2. The X Events by Andrew P. McAuley can be found in Sprezzatura’s Electronic Newsletter (S/ENL) Volume 1, Issue 7.
Here is a direct link to this article: http://www.sprezzatura.com/senl/senl17.htm#_Toc447357930

3. SRP promotes several events and uses the Promoted_Events function to manage them all in one place. Here is the full list of equates that we use:

Equ Create$ tol
Equ Activated$ to 2
Equ Read_Pre_System$ to3
Equ Clear_Post_System$ | to 4
Equ Close_Post_System$ to5
Equ Size$ to 6
Equ Delete_Post_System$ | to 7
Equ Winmsg$ to 8

Equ Write_Pre_System$ to 9

Equ Gotfocus$ to 10
Equ Lostfocus$ to 11
Equ Inactivated$ to 12

Equ Read_Post_System$ | to 13
Equ Clear_Pre_System$ to 14
Equ Poschanged$ to 15
Equ Close_Pre_System$ | to 16
Equ Write_Post_System$ to 17

Equ Delete_Pre_System$ | to 18

Equ InsertRow$ to 19
Equ DeleteRow$ to 20
Equ ColSize$ to 21
Equ RightClickUp$ to 22
Equ MouseOver$ to 23

Equ MouseOff$ to 24

http://www.sprezzatura.com/senl/senl17.htm#_Toc447357930

4. Now that you have a RightClickUp event, you need to think of something for it to do. Implementing a Context Menu is a wonderful feature to add to your
application. With them you can offer control-specific menu functions, such as what this screen shot shows:

10.00 En}}:i‘?ljl;&:'ﬁ-gq 140.00 140.00
k- e Delete Row
4
- Edit Part Mo, G327085-24...
|- Add Packaging Instructions. ..
Environmental Surcharge | View Job #25927... xtended Total 140.00
Print Shop Traveler

Revelation Software has a Creating context menus article in the Knowledge Base section of their website. Here is a direct link to this article: http://www.
revelation.com/knowledge.nsf/d77dcc92cb73ae6b852566f500657e9d/d0edb4df752b6fb8852563b9005f7e03?OpenDocument

http://www.revelation.com/knowledge.nsf/d77dcc92cb73ae6b852566f500657e9d/d0edb4df752b6fb8852563b9005f7e03?OpenDocument
http://www.revelation.com/knowledge.nsf/d77dcc92cb73ae6b852566f500657e9d/d0edb4df752b6fb8852563b9005f7e03?OpenDocument

	Creating a Custom Event

