
1.  
2.  

SRP_Date Parse
Parses a string into a date.

Date = SRP_Date("Parse", Text, Format = "Short", Locale = "")

Returns

A date in OI internal format.

Parameters

Parameter Description

Text A string containing a date in human readable format. (REQUIRED)

Format A custom or predefined format. (OPTIONAL)

Locale A locale for culture specific names and formatting. (OPTIONAL)

Remarks

The "Parse" service converts human readable text into an OI date, much like IConv. IConv is rather limited on the kinds of strings you can parse. This 
service provides a very optimistic parser that can successfully parse any well formed date, even those in other languages.

Guiding the Parser

The challenge with dates is that there is no universal order. Take the following as an example:

    02/03/2004

If you are from the United States, this February 3, 2004, but in Europe, this is March 2, 2004. Therefore, we need to provide the parser a hint as to the 
expected order. This is done with the  parameter.Format

You can set   to any value described in the  service. The Parser will use it only to identify the order in which to find date and time Format Format
components. The parser is smart enough to find months whether they are names or numbers, so long as they are in the right place in the order you specify.

If you set  to "Short" or "Long", then the order is determined by . Locale can be set to Windows  to target a specific language or Format Locale Locale Name
left blank to use the user's current locale settings. Using the above example date, if the locale is "en-US", then the parser would interpret it to be February 
3, 2004. If the locale is "es-ES" (Spanish - Spain), then it would be interpreted as March 2, 2004.

Suppose you want a very specific order. In that case, you can set  to something like "MMMM D, YYYY". Remember, only order matters. If you used Format
this format in the  service, it would product "February 3, 2004." When you use this format in the Parse service, it can handle "February 3, 2004", "2/3Format
/04", and anything else so long as the order is Month, Day, Year. Note, however, that locale still matters. If you set  to "MMMM D, YYYY" and Format Locale
to "es-ES", then "February 3, 2004" will fail to parse but "febrero 3, 2004" and "2/3/04" will succeed.

2-Digit Year

The parser uses a unique rule to handle 2-digit years. The assumption is that, most of the time, the parser is used to parse a user's inputted date. 
Typically, people prefer to use shorthand. Here is the rule this parser uses to interpret a 2-digit year.

Any 2-digit year that is 20 or less years after the current 2-digit year is in the current or next century.
Any 2-digit year that is more than 20 years after the current year is in the previous century.

It is 2020 at the time of this writing. Therefore, any 2-digit year between 0 and 40 is considered to be in the 2000s, but 41 and greater would be in the 
1900s. Thus 31 would be 2031, not 1931, but 41 is 1941, not 2041. This algorithm also handles the century transition, so if the current year is 2090, and 
the 2-digit year is 07, then 07 is considered to be 2107, not 2007, but 27 is considered to be 2027, not 2127.

Here is a cross reference chart showing the parser's output given the current year (left column) and a user's input (top row):

"7" "17" "27" "37" "47" "57" "67" "77" "87" "97"

2020 2007 2017 2027 2037 1947 1957 1967 1977 1987 1997

2030 2007 2017 2027 2037 2047 1957 1967 1977 1987 1997

2040 2007 2017 2027 2037 2047 2057 1967 1977 1987 1997

2050 2007 2017 2027 2037 2047 2057 2067 1977 1987 1997

2060 2007 2017 2027 2037 2047 2057 2067 2077 1987 1997

2070 2007 2017 2027 2037 2047 2057 2067 2077 2087 1997

https://wiki.srpcs.com/display/SRPUtilities/SRP_Date+Format
https://wiki.srpcs.com/display/SRPUtilities/Locale+Name
https://wiki.srpcs.com/display/SRPUtilities/SRP_Date+Format


2080 2007 2017 2027 2037 2047 2057 2067 2077 2087 2097

2090 2107 2017 2027 2037 2047 2057 2067 2077 2087 2097

2100 2107 2117 2027 2037 2047 2057 2067 2077 2087 2097

Default Order

The parser will attempt to succeed in parsing a date even if you don't supply the entire order in the . The default order is always Year, Month, and Format
Day. If your format is just "D/M", then it will look for the day and month first, then it will look for the year. If you only supply "M", it will look for the month 
first, then it will look for the year followed by the day.

Default Components

The parser is very optimistic, so if the incoming text is missing some components, it will attempt to reasonably fill the gaps. For example, let's say the 
format is "M/D/YYYY", but the user types, "3/15", the parser will succeed, producing a date of March 15, 2020 assuming 2020 is the current year. Here are 
the defaults used when a component is omitted.

Component Default Reason

Year Current Year Defaulting to the current year allows parsing of month/day.

Month n/a If the month is missing, the parse will fail.

Day 1 Defaulting to the first day of the month allows parsing of month/year.

Examples

// Parse a date using the default format and the current locale as a guide
Date = SRP_Date("Parse", "1/14/2020")

// Parse a date using the long format and the current locale as a guide
Date = SRP_Date("Parse", "Tuesday, January 14, 2020", "Long")

// Parse a date using the long format and the Spanish language as a guide
Date = SRP_Date("Parse", "martes, 14 de enero de 2020", "Long", "es")

// Parse a date using a custom format and the Spanish-MEXICAN language as a guide
Date = SRP_Date("Parse", "enero 14, 2020", "MMMM D, YYYY", "es-MX")


	SRP_Date Parse

