
How do I debug my API?
Debugging an API is essentially no different than debugging any stored procedure. Therefore, a developer can simply put a debug statement in the code.
However, this might not be desirable if the web APIs are being accessed by regular users. This article will provide a couple of techniques for debugging

 with minimal impact toward other users.and analyzing APIs

First Things First

In order to interact with the visual debugger there are a couple of configuration steps that are required.

1. Run the Engine Server in "Debug" Mode

The first step is to make sure you are running the Engine Server from a command prompt (aka "debug" mode). In our article, we Testing for Success
provide a sample screen shot of how to launch the Engine Server from a command prompt. It is important to remember that if the Engine Server is also
configured to run as a Windows Service then this will need to be stopped in order for the Engine Server in the command prompt to run successfully.
Further information can be found in the official document.103-966 OpenInsight OEngineServer Configuration.pdf

2. Enable the Debugger

The second step is to make sure the engines handling the HTTP request are set to enable the visual Debugger. By default, headless engines will use the
Debugger Settings from the Database Manager:

However, there might be times when the production database wants to avoid the setting but the API developer needs to use the visual Debugger. Enable
For reasons like this, the form provides the same options as the Database Manager but this setting will only affect those engines HTTP Framework Setup
handling HTTP requests:

Triggering the Debugger

The most direct way to debug an API is to debug the code. However, as noted above, simply embedding a debug statement in the API code would
interrupt all requests. So there needs to be a way to safely trigger the debugger. In traditional OpenInsight development, developers could check for
unique conditions such as the values in the @USERNAME or @STATION system variables. Since all HTTP requests will always be handled by the same
username and station, this method isn't useful.

https://wiki.srpcs.com/display/HTTPFramework/Testing+for+Success
https://wiki.srpcs.com/display/HTTPFramework/NDW_HTTP_FRAMEWORK_SETUP

One way to introduce unique conditions is to add to the API request. API testing tools like Postman make it very easy to add custom custom parameters
parameters. We recommend updating the string from the registry key to include . Doing so will tell the OECGI to AdditionalValues OECGI4 HTTP_DEBUG
pass through a request header with the name . You could, of course, create any name (or) you want.Debug names

The controller routine already has code that checks for a value assigned to the request header:HTTP_MCP Debug

// Engage the debugger if requested.
If HTTP_Services('GetRequestHeaderField', 'Debug') then Debug

This same code could be copied anywhere and adapted as needed (e.g., change the name of the header field or check for a specific field value). APIs can
now be easily debugged without impacting regular API calls.

Examining the Log Files

While not the same as using the Debugger in an interactive manner, the log files can provide an abundance of useful information. For instance, the entire
OECGI request array is maintained in each log. This is structured so it is easy to review (read: delimiters are replaced with human readable Request
formatting). The entire response (with some useful metadata) is maintained in each log. Furthermore, depending upon how your Response Debugger

 is configured, runtime errors will appear in a , , or log. If you already know some details about a specific request that Setting Debugger Aborted GetStatus
you need to investigate (e.g., status code, date/time range, endpoint, etc.) you can quickly find the relevant logs using the utility (just launch HTTP Logs
the form):NDW_HTTP_LOGS

Careful study of the logs files can often avoid the need to debug code. In the above screen shot, sample runtime errors can be seen in the log Aborted
types. Unexpected conditions that are not due to runtime errors (like 4xx responses) can also be easily inspected with the relevant logs.

https://wiki.srpcs.com/pages/viewpage.action?pageId=22839489
https://wiki.srpcs.com/display/HTTPFramework/HTTP_MCP

	How do I debug my API?

