
The Big Picture
Learning how to use a new tool can be intimidating. Hopefully the following illustration will help remove some of that new tool anxiety.

Workflow
Resources

Defining a Resource
Defining a Resource ID
Enabling our Methods

APIs
Creating our API Commuter Module
Editing our API Commuter Module
Making APIs Functional

In Summary

Workflow

The SRP HTTP Framework basically involves two steps: and . A definition enables the SRP HTTP Framework defining resources creating APIs resource
to determine if an incoming request is legitimate. An contains the programming logic to create the digital resource that gets returned. Each of these API
steps can be simple or complex, depending upon the needs of the application. However, once the basic workflow steps are understood, creating rich
resources and elaborate APIs becomes much easier.

Resources

Defining a Resource

Developers start by thinking about a they want to expose to the internet. A can be almost anything, but typically a will have a resource resource resource
close relationship to a database table in the OpenInsight application. To illustrate, we'll define a that relates to a CUSTOMERS database table.resource

We'll use the to define a . Most resources will appear directly underneath the API endpoint (i.e., they are resources). Resource Manager resource primary
To do this we select the resource node from the tree view, click on the button, and enter the name of the (1) api Resource Manager (2) New Resource (3)
new :resource

Defining a Resource ID

Is the resource we just defined or is it a (aka) of other resources? In our case, the resource is a singular collection parent child customers collection
because it represents multiple individual customers, each with their own unique identifier. Therefore, we need to define a so any specific resource ID
customer resource can be identified.

https://wiki.srpcs.com/pages/viewpage.action?pageId=20382515

We start by selecting the newly created resource node from the tree view, click on the button, and (1) customers Resource Manager (2) New Resource ID (
 enter the name of the :3) resource ID

Enabling our Methods

Once a resource endpoint has been defined, we need to define how clients will be able to interact with it by enabling one or more . For most methods
database driven resources, functionality is achieved through the (create), (read), (update), and (delete) . For our CRUD POST GET PUT DELETE methods
purposes, we'll allow new customers to be created by enabling the method for the resource endpoint. To do this we just select the POST customers (1) cust

 resource node from the tree view and click on the checkbox under the block:omers Resource Manager (2) POST Methods

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

We'll also allow specific resource endpoints to be read, updated, and deleted. To do this we select the resource node from the customerID (1) customerID
 tree view and (2) click on the checkboxes under the block:Resource Manager GET, PUT, and DELETE Methods

APIs

Creating our API Commuter Module

When we are happy with our new resource endpoints, we create the simply by clicking on the button. This should API commuter module (1) Create APIs (2)
produce a dialog message confirming that new APIs have been created:

Editing our API Commuter Module

All are named after the parent resource. Resource IDs are not considered an independent resource, even though it has its own API commuter modules
endpoint, so their APIs will always be included within the of their parent resource. In our case, the parent resource is so API commuter module customers
our will be called . Let's open it using the SRP Editor:API commuter module CUSTOMERS_API

The above is just a snippet of the commuter module, but it showcases all of our customer resource APIs:CUSTOMERS_API

API Signature Purpose

API customers.POST Creates a new customer.

API customers.ID.GET Reads a specified customer .

API customers.ID.PUT Updates a specified customer.

API customers.ID.DELETE Deletes a specified customer.

In each of our APIs there is a call into the service (a member of the module). The purpose of this special service is LoremIpsum HTTP_Resource_Services
to enable the new API to produce sample content so the API can be tested immediately (see our article for an example of this).How do I create an API?

Making APIs Functional

We'll assume that our APIs are responding properly to requests so we are now ready to make our the way we want. The way this gets done APIs function
can vary greatly based on the nature of the resource, the purpose of the API, and the overall design intent of the application. In simple cases where the
resource is related to a database table, we can use some high-level services to make this quick and easy. Since our customers resource is related to the
CUSTOMERS database table, we'll update our API commuter module as follows:

Obviously there is a lot of automation going on within these services. Depending upon your needs, your code might look very different. We encourage you
to start with our article to get a feel for the different ways this task can be approached.How do I create a resource?

https://wiki.srpcs.com/display/HTTPFramework/HTTP_Resource_Services
https://wiki.srpcs.com/pages/viewpage.action?pageId=20382603
https://wiki.srpcs.com/pages/viewpage.action?pageId=20382668

In Summary

Hopefully this illustration encourages you to use the SRP HTTP Framework with a sense of confidence. Quite often the developer just repeats the above
steps as new resources are added to the application or when existing resources are updated (e.g., adding a new method an endpoint). There are other
important elements that this article did not explore, such as authentication, authorization, unique resource media types, hypermedia, etc., but these will all
come in good time and will be easier to implement once you master the basics.

	The Big Picture

