How do | add hypermedia to a resource?

On its own, information represented in resource objects is simply media. However, in order to encourage client exploration and access to related resources
we need to add hypermedia to our resources. RESTful API developers often abandon hypermedia (the "H" in HATEOAS) implementation because it can
be considered more effort than it is worth. The SRP HTTP Framework makes this much easier through the use of automation and dedicated services.

Using the AddLinkRelationship Service
Using the AddEmbeddedResources Service
Using the GetDatabaseltems Service

Using the AddFormAction Service

Using the AddLinkRelationship Service

In our How do | create a resource? article we introduced the GetObject service as a primary method for creating resource objects. To keep our
documentation focused on creating a resource objects, we did not introduce hypermedia. Now we will use the same code sample and introduce a new
service: AddLinkRelationship. The AddLinkRelationship service creates the HAL _links reserved property:

APl customers. | D. GET

Keyl D = Endpoi nt Segnent

Col utmNares = "FIRST_NAME' : @M: 'LAST_NAME : @M: 'ADDRESS : @M: 'CITY : @M: 'STATE : @M:
“ZIP

Pr oper t yNanes ='firstName' : @M: 'lastNane' : @M : 'address' : @M: 'city' : @M: 'state' : @M:
' zi pCode’

/'l Create a JSON object in nenory.

obj Resour ce = HTTP_Resource_Services(' Get Object', 'CUSTOVERS , Keyl D, Col umNanes, PropertyNanes)

If Error_Services('NoError') then
/1 Add _links sub-properties for HAL inplenentation.
HTTP_Resour ce_Servi ces(' AddLi nkRel ati on', obj Resource, 'self', Full Endpoi nt URL)
HTTP_Resour ce_Servi ces(' AddLi nkRel ati on', obj Resource, 'collection', ParentURL)
end

If Error_Services('NoError') then
/1 Serialize the JSON object.
j sonResour ce = HTTP_Resour ce_Services(' Get Seri al i zedResource', obj Resource)
/] Set the response body with the serialized JSON object and set the Content-Type response header.
HTTP_Servi ces(' Set ResponseBody', jsonResource, False$, 'application/hal+json")

end el se
/1 There is an error condition so call the Set ResponseError service.
HTTP_Servi ces(' Set ResponseError', '', "', 500, Error_Services(' Get Message'), Full Endpoi nt URL)
end
end api

By using the FullEndpointURL and the ParentURL prepopulated variables, we automatically have the self and collection relations ready to add to the _links
property:

"address":"6649 N Blue Gum St*",
"city":"New Ol eans",
"firstName":"Janes",
"] ast Nane":"Butt",
"state":"LA",
"zi pCode":"70116",
"_links":{
"sel f":{
"href":"https://ww.exanpl es. org/ api / cust oners/ 1"
}
"collection":{
"href":"https://ww. exanpl es. org/ api / cust oner s"

}


https://wiki.srpcs.com/pages/viewpage.action?pageId=20382749
https://wiki.srpcs.com/pages/viewpage.action?pageId=20382668
https://wiki.srpcs.com/pages/viewpage.action?pageId=20382848

There is also a AddLinkRelations service. It's a wrapper around the AddLinkRelation service that allows the developer to pass in an @FM delimited list of
relations and URLSs into a single call. Developers will need to decide if the AddLinkRelations service provides enough convenience in lieu of multiple AddLin
kRelation calls.

Using the AddEmbeddedResources Service

HAL also supports the _embedded reserved property, which is a way to include partial or whole resources within the primary resource object. These
embedded resources are themselves stand-alone resources with their own endpoints. The usual reason they are embedded is so the client does not have
to make multiple requests to get this same resource information. This is common with collection APIs (e.g., GET / cust oner s). The following code
sample uses the GetObjects service to return an array of customers resource objects. These are then embedded into the primary resource object using the
AddEmbeddedResources service:

APl customers. GET

/] Create the primary resource object.
obj Resour ce = HTTP_Resource_Servi ces(' Get Cbj ect')
If Error_Services('NoError') then
/] Create the sub-resource objects.
obj SubResources = HTTP_Resource_Servi ces(' Get Obj ects', 'CUSTOMERS', '', 'FIRST_NAME : @M :
'LAST_NAME', 'firstName' : @M: 'lastNane', '', '', '', Full Endpoi nt URL)

If Error_Services('NoError') then
/] Pass the sub-resource object list to the AddEnbeddedResources service. Use the 'custoners' |abel
to identify the type of sub-resource.
HTTP_Resour ce_Servi ces(' AddEnbeddedResources', obj Resource, 'custoners', obj SubResources)
end

If Error_Services('NoError') then
/1 Serialize the JSON object.
j sonResour ce = HTTP_Resour ce_Services(' Get Seri al i zedResource', obj Resource)
/] Set the response body with the serialized JSON object and set the Content-Type response header.
HTTP_Servi ces(' Set ResponseBody', jsonResource, False$, 'application/hal+json")

end el se
/1 There is an error condition so call the Set ResponseError service.
HTTP_Servi ces(' Set ResponseError', "', '', 500, Error_Services(' Get Message'), Full Endpoi nt URL)
end
end
end api

This APl would return the following resource object:

{
" _enbedded": {
"custoners": [
{

"firstName":"Harrison",
"] ast Nane": "Haufler",

"_links":{
"sel f":{
"href":"https://ww. exanpl es. org/ api / cust oner s/ 266"
}
}
b
{
"firstNane":"Haydee",
"| ast Nane": " Denooyer",
"_links":{
"sel f":{
"href":"https://ww. exanpl es. org/ api / cust oner s/ 271"
}
}
}
{

"firstNane": " Hei ke",
"| ast Nane": " Ber ganza",
"_links":{
"sel f":{
“href":"https://ww. exanpl es. or g/ api / cust oner s/ 254"



}
o
{
"firstNanme": " Hel ga",
"l ast Nane": " Fredi cks",
"_links":{
"sel f":{
“href":"https://ww. exanpl es. or g/ api / cust oners/ 202"
}
}
b
{
"firstNane":"Her man",
"] ast Nane": " Denesa",
"_links":{
"sel f":{
“href":"https://ww. exanpl es. or g/ api / cust oners/ 125"
}
}
},
{
"firstNanme":"Hermnia",
"] ast Nane": " Ni col ozakes",
" _links":{
"sel f":{
"href":"https://ww. exanpl es. org/ api / cust oner s/ 287"
}
}
o
{
"firstName":"Hillary",
"] ast Nane": " Skul ski ",
"_links":{
"sel f":{
“href":"https://ww. exanpl es. or g/ api / cust oner s/ 186"
}
}
b
{
"firstName": " Howar d",
"] ast Nane": " Paul as",
"_links":{
"sel f":{
"href":"https://ww. exanpl es. org/ api / cust oner s/ 132"
}
}
}

Using the GetDatabaseltems Service

We previously introduced the GetDatabaseltem service. There is a similar service called GetDatabaseltems and it is also a member of the HTTP_Resourc
e_Services module. Like the GetDatabaseltem service, the GetDatabaseltems service is deprecated but we do not intend to remove it. For certain use
cases it is quite handy for producing collection resources with embedded content:


https://wiki.srpcs.com/pages/viewpage.action?pageId=20382668
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Resource_Services
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Resource_Services

APl customers. GET

j sonResour ce = HTTP_Resource_Servi ces(' Cet Dat abaseltens', '', 'CUSTOMVERS' , Ful | Endpoi nt URL, 'FI RST_NAME'
@M : 'LAST_NAME , 'firstNane' : @M : 'lastNane')

If Error_Services('NoError') then
/] Set the response body with the serialized JSON object and set the Content-Type response header.
HTTP_Servi ces(' Set ResponseBody', jsonResource, False$, 'application/hal+json')

end el se
/1 There is an error condition so call the Set ResponseError service.
HTTP_Servi ces(' Set ResponseError', "', "', 500, Error_Services(' Get Message'), Full Endpoi nt URL)
end
end api

This approach doesn't provide a way to customize the name of the embedded resource (e.g., customers, vendors, etc.). Instead, it just defaults to item.
Here is an example of the resource object:

" _enbedded": {
"item: [
{
"firstName":"Harrison",
"] ast Nane":"Haufler",

"_links":{
"sel f":{
"href":"https://ww. exanpl es. org/ api / cust oner s/ 266"
}
}
},
{
"firstName": " Haydee",
"| ast Nane": " Denooyer",
" _links":{
"sel f":{
"href":"https://ww. exanpl es. org/ api / cust oner s/ 271"
}
}
}
{
"firstNanme": " Hei ke",
"] ast Nane": " Ber ganza",
"_links":{
"sel f":{
“href":"https://ww. exanpl es. or g/ api / cust oner s/ 254"
}
}
b
{
"firstNane":"Hel ga",
"] ast Nane": " Fredi cks",
"_links":{
"sel f":{
"href":"https://ww. exanpl es. org/ api / cust oner s/ 202"
}
}
},
{
"firstNane":" Her man",
"l ast Nane": " Denesa",
"_links":{
"sel f":{
“href":"https://ww. exanpl es. or g/ api / cust oner s/ 125"
}
}
}
{

"firstNanme":"Hermnia",



"] ast Nane": " Ni col ozakes",

"_links":{
"sel f":{
"href":"https://ww. exanpl es. org/ api / cust oner s/ 287"
}
}
b
{
"firstNane":"Hllary",
"] ast Nane": " Skul ski ",
"_links":{
"sel f":{
"href":"https://ww. exanpl es. org/ api / cust oner s/ 186"
}
}
b
{
"firstNanme": " Howar d",
"l ast Nane": " Paul as",
"_links":{
"sel f":{
"href":"https://ww. exanpl es. org/ api / cust omer s/ 132"
}
}
}
]
3
"_links":{
"sel f":{
"href":"https://ww. exanpl es. org/ api / cust oners"
}
}

Using the AddFormAction Service

The services described above add hypermedia in the form of URI relations using the reserved properties from the HAL specification (specifically _links and
_embedded). While URI relations provide valuable hypermedia to the client, many developers have expressed a desire for additional metadata to better
instruct clients how to call the URI. For example, a URI by itself doesn't inform the client which HTTP methods are supported. Granted, the OPTIONS meth
od is intended to provide this information, but other requirements might necessitate out-of-band knowledge. This causes our APIs to lose their self-
documenting character.

Mike Kelly, the author of the HAL specification, comments that omitting additional metadata in the HAL specification was "intentional" in order to keep it
"focused on linking". However, he also suggests that "HAL is therefore a good candidate for use as a base media type on which to build more complex
capabilities”. This has spurred developers of RESTful APIs to shore up this gap through alternative hypermedia types (such as api+json, collection+json, hy
per+json, and siren+json). Unfortunately, none of them have the maturity and broad acceptance that HAL does. Also, some of them over complicate the
task of adding simple hypermedia to a resource. HAL, on the other hand, is relatively lightweight and easy to implement and consume.

Therefore, the SRP HTTP Framework uses the HAL specification as its base media type and the AddLinkRelationship, AddEmbeddedResources, and Get
Databaseltems services produce HAL compliant hypermedia. However, in those cases when a developer really wants to provide extra metadata to the
client, we have provided the AddFormAction service. The AddFormAction service adds a custom hypermedia structure inspired by the work Ben
Greenberg and his team did for the Comcast Xfinity APIs (you can watch his presentation on this here). To better explain the AddFormAction service, we
have a dedicated article called How do | add hypermedia controls to a resource?.


http://stateless.co/hal_specification.html
https://tools.ietf.org/id/draft-kelly-json-hal-03.html#rfc.appendix.Appendix%20B.5
https://jsonapi.org/
http://amundsen.com/media-types/collection/
http://hyperjson.io/spec.html
http://hyperjson.io/spec.html
https://github.com/kevinswiber/siren
https://www.youtube.com/watch?v=EaVqkfsPmvQ&feature=youtu.be&t=1645
https://wiki.srpcs.com/pages/viewpage.action?pageId=20383236

	How do I add hypermedia to a resource?

