
What is HAL?
No, this is not a reference to the from Clarke's ,HAL 9000 2001: A Space Odyssey

Quick Answer
Digging Deeper

Reserved Properties
_links
_embedded

In Summary

Quick Answer

HAL is an acronym for and is designed to provide "...a set of conventions for expressing hyperlinks in either JSON or Hypertext Application Language
XML." HAL is an . This enables RESTful APIs to return JSON* containing hypertext (aka hypermedia) which can be easily IANA registered media type
interpreted by machine and human agents. Because it is a registered media type, developers can specify as the value for the application/hal+json C

 response header.ontent-Type

* There is a HAL media type for both JSON and XML. However, we will limit our attention to JSON since that is what the SRP HTTP Framework uses by default.

Digging Deeper

In our article we introduced an important aspect of the constraint known as . The intent of borrows What is REST? Uniform Interface HATEOAS HATEOAS
the concept of HTML hyperlinks as a means of providing self-documented options to users. The difference is that HTML defines this as a standard which
makes it possible for clients to interpret the hyperlinks automatically. Plain old does not include any definition for hypermedia. This means any JSON
hypermedia included in a JSON object has no way of being self-interpreting. Clients cannot know the difference between a URI that is part of the static
resource data (i.e., just plain media) versus a URI that clients can use to navigate to another resource (i.e., hypermedia).

HAL resolves this by extending JSON to include hypermedia and define the standard so clients can properly identify hypermedia within JSON objects. This
is why the SRP HTTP Framework normally sets the response header to instead of just . It Content-Type application/hal+json application/json
is important to note that HAL does not redefine JSON. This means clients can navigate and parse HAL content using the same rules as standard JSON.

Reserved Properties

HAL reserves two properties so that clients can interpret hypermedia in a resource object: and . These properties are prefixed with _links _embedded
underscores to avoid collision with properties that developers might use in actual static resource objects.

_links

This property contains one or more . Each name defines its relation to the primary resource object. The values sub-properties sub-property sub-property
are themselves name/value pairs. Here is an example of a resource object containing a few link relations:

{
 "firstName":"James",
 "lastName":"Butt",
 "address":"6649 N Blue Gum St",
 "city":"New Orleans",
 "state":"LA",
 "zip":"70116",
 "county":"Orleans",
 "email":"jbutt@gmail.com",
 "_links":{
 "self":{
 "href":"https://www.examples.org/api/customers/1"
 },
 "collection":{
 "href":"https://www.examples.org/api/customers"
 },
 "openOrders":{
 "href":"https://www.examples.org/api/customers/1/orders?status=Open"
 }
 }
}

In the above resource object, there are three relations defined: , , and . Each relation then includes an sub-property with a self collection openOrders href
URI value that allows the client to request that resource.

https://en.wikipedia.org/wiki/HAL_9000
http://stateless.co/hal_specification.html
https://www.iana.org/assignments/media-types/application/vnd.hal+json
https://wiki.srpcs.com/pages/viewpage.action?pageId=20382532
https://wiki.srpcs.com/pages/viewpage.action?pageId=20382749
http://www.json.org/

In the , there SHOULD always be a relation. This references the current resource object, as per the . Other HAL specification draft self Web Linking RFC
relations can be defined by the developer as needed assuming they are meaningful to the resource. All relation names should be immutable. That is, once
a relation name has been defined, clients assume it will never change. The URI that a relation points to change in order to maintain the should can
decoupled and client/server independent intent of . Relations can be deprecated.HATEOAS

HAL intentionally defined link relations to be simple. To support the self-documenting and discoverability intent of a RESTful API, clients be able to should
use the HTTP method to get a list of all supported HTTP methods for a given API. The list of all supported HTTP methods is expected to appear OPTIONS
in the response header. The SRP HTTP Framework handles this automatically.Allow

_embedded

This property contains one or more . Each name defines one or more embedded resource objects within the current resource sub-properties sub-property
object. These embedded resource objects (which are technically) represent a partial or whole resource object that should have its own API sub-resources
(i.e., URI endpoint). The reason for including embedded resource objects will vary and are always based on the developer's needs. Embedded resource
objects are typically added to provide one API with enough additional resource information to prevent the need for additional API calls. This is very
common with APIs. For example, in the above resource object we identified a URI with a relation of . An inspection of the URI itself collection collection
reveals that the endpoint is simply . The absence of a unique identifier to a customer (e.g.,) is expected to mean "all /customers /customers/1
customers", also referred to as "the of customers".collection

At a minimum, the API should return all URIs related to each customer in the collection. However, perhaps a client wants to use this GET /customers
API as a way to provide visitors with a list of customers. If the client intends to display other customer properties (e.g., first and last name), then the client
would need to make a request for each URI. This could become a resource intensive process. It would be far better if the initial GET /customers/{id} G

 request returned all the URIs along with partial resource objects which can be immediately consumed and used by the client. Here is an ET /customers
example of a resource object with one embedded resource:

{
 "_embedded":{
 "customers":[
 {
 "firstName":"Harrison",
 "lastName":"Haufler",
 "_links":{
 "self":{
 "href":"https://www.examples.org/api/customers/266"
 }
 }
 },
 {
 "firstName":"Haydee",
 "lastName":"Denooyer",
 "_links":{
 "self":{
 "href":"https://www.examples.org/api/customers/271"
 }
 }
 },
 {
 "firstName":"Heike",
 "lastName":"Berganza",
 "_links":{
 "self":{
 "href":"https://www.examples.org/api/customers/254"
 }
 }
 },
 {
 "firstName":"Helga",
 "lastName":"Fredicks",
 "_links":{
 "self":{
 "href":"https://www.examples.org/api/customers/202"
 }
 }
 },
 {
 "firstName":"Herman",
 "lastName":"Demesa",
 "_links":{
 "self":{
 "href":"https://www.examples.org/api/customers/125"
 }
 }

https://tools.ietf.org/html/draft-kelly-json-hal-08
https://tools.ietf.org/html/rfc5988
https://wiki.srpcs.com/pages/viewpage.action?pageId=20382749
https://tools.ietf.org/html/rfc7231#section-4.3.7

 },
 {
 "firstName":"Herminia",
 "lastName":"Nicolozakes",
 "_links":{
 "self":{
 "href":"https://www.examples.org/api/customers/287"
 }
 }
 },
 {
 "firstName":"Hillary",
 "lastName":"Skulski",
 "_links":{
 "self":{
 "href":"https://www.examples.org/api/customers/186"
 }
 }
 },
 {
 "firstName":"Howard",
 "lastName":"Paulas",
 "_links":{
 "self":{
 "href":"https://www.examples.org/api/customers/132"
 }
 }
 }
]
 }
}

Here are a few notes regarding the above resource object and embedded resources in general:

The name of the embedded resource in our example is .customers
Other embedded resource names can be included. Each embedded resource name is a of the property.sub-property _embedded
Embedded resources can be singular (i.e., the value is just a resource object) or plural (i.e., the value is an array of resource objects). If the
embedded resource object is singular by definition, then just set the value to a resource object. Otherwise, use an array even if there is only one
embedded resource object. Otherwise, adding an array later on could break clients.
Each embedded resource object should also include its own relation link (which is identified by the property).self _links

In Summary

While HAL is not the only IANA registered media type that provides standards for including hypermedia in JSON objects, it is one of the most popular and
easiest to implement. For this reason, the SRP HTTP Framework provides the and services to make it much AddLinkRelation AddEmbeddedResources
easier to create APIs.HATEOAS

	What is HAL?

