
Why is HATEOAS important?
In our article we focused on a few of the important constraints of REST that are relevant to the SRP HTTP Framework. When discussing What is REST?
the constraint, we provided an introduction to the concept of (or for short). In Uniform Interface Hypermedia As The Engine Of Application State HATEOAS
our summary of the concept of HATEOAS, we emphasized its importance but suggested the reader visit this present page to understand why HATEOAS

.is important

Quick Answer
Digging Deeper

Hypermedia
Engine
Application State

In Summary

Quick Answer

This nicely summarizes some key objectives and benefits of HATEOAS, so we will cite these here (the emphasis in the Wikipedia article on HATEOAS
below citations are ours):

Since "...application servers provide information dynamically through hypermedia. A about how REST client needs little to no prior knowledge
to interact with an application or server beyond a generic understanding of hypermedia."
" ...decouples client and server functionality ."HATEOAS enables the server to evolve independently
" future returned from the server."All actions the client may take are discovered within resource representations
" , rather than out-of-band information."RESTful interaction is driven by hypermedia

To be fair, there are plenty of people who appreciate REST in some respects, but ultimately do not see the significance or value of HATEOAS. This
approach to RESTful APIs is often referred to as . RESTful APIs that emphasize HATEOAS is sometimes referred to as (at pragmatic REST purist REST
times derisively by non-purist developers). This represents a well reasoned argument against the necessity of HATEOAS. He article from Ben Morris
acknowledges the intent of HATEOAS such as those listed above, but ultimately concludes that the cost of HATEOAS outweighs the tangible benefits. Our
intent is not to debate the subject or pick apart any arguments against HATEOAS. Rather, we prefer to just outline our case for HATEOAS so each
developer can make up their own mind. The important part is for a developer to decide early on whether or not HATEOAS will be a normal part of the API
to avoid shoehorning it in or excising it out later on in the life-cycle of API development. To facilitate developer choice, the SRP HTTP Framework does not
enforce HATEOAS implementation but it does provide tools to implement HATEOAS relatively easy.

Digging Deeper

It might help to explore some of these concepts a little more and illustrate with a simple use case. We'll do this by looking at the core terms in the
HATEOAS acronym: , , and .Hypermedia Engine Application State

Hypermedia

Hypermedia refers to content in a resource that is itself, or somehow contains, a URI link to another resource. The most common type of hypermedia is we
experience is . It is arguably the most significant reason why the web so easy to navigate and explore. Consider any website that you load into a hypertext
browser. How does one discover and explore additional content that is available? We all know the answer: through the URI links available on the page. In
HTML, we usually encounter these links in the form of text or images that have been created using the . Visitors do not require a road map nor anchor tag
or a manual of available URIs to access other content. The embedded hypermedia provides a visitor everything needed to continue. This addresses one
important benefit of hypermedia: . That is, assuming that the links are well labelled and clearly identified on the page, they self-documenting systems
serve as self-documenting elements that the users can easily understand.

Another benefit of hypermedia, although one that might not be obvious to the typical visitor, is that URIs can change without advertising this to the user.
When a user clicks a link, the user normally only cares that they will arrive at the correct destination and not worry too much about the URI that got them
there. If the link isn't broken then all is good. Therefore, sites are free to change their URIs as long as they allow the user to find what they are looking for.
This introduces another import benefit of hypermedia: . That is, web should be allowed to change as needed and not client/server independence servers
worry about breaking any client functionality (i.e., the web browser) because the server is always providing the client with current URIs.client

These two benefits can also apply to web APIs. If our resource objects contain hypermedia, then our APIs become . If the system that self-documenting
communicates with our API understands that it will receive hypermedia then we will achieve . Our APIs, then, can evolve much client/server independence
easier (as well as the client relying on our APIs). This doesn't discuss REST or HATEOAS directly, but it does provide a very thoughtful Martin Nally article
and compelling reason for using hypermedia (aka links) in API responses.

Engine

In this context, is an abstract term meaning . By itself it doesn't mean anything but it does connect the force (engine the force that produces a result hyperm
) with the result ().edia application state

Application State

For our purposes, refers to the resource content as it exists in the at a specific point in time. As we have noted above when application state client
describing hypermedia, web servers (and web APIs) return digital content, but this content can be separated into two categories: and . static hypermedia
Static data is what a client considers meaningful and directly related to the URI itself (e.g., is expected to return information related GET /orders/1234
to order #1234, such as customer number, order date date, line item detail, etc.). Hypermedia data, however, informs the client what new states are
available. For instance, our order resource might also include the following hypermedia:

A link to the related customer resource (e.g.,).GET /customers/1

https://wiki.srpcs.com/pages/viewpage.action?pageId=20382532
https://en.wikipedia.org/wiki/HATEOAS
https://www.ben-morris.com/pragmatic-rest-apis-without-hypermedia-and-hateoas/
https://en.wikipedia.org/wiki/Hypermedia
https://en.wikipedia.org/wiki/Hypertext
https://www.w3schools.com/tags/tag_a.asp
https://cloudblog.withgoogle.com/products/application-development/api-design-why-you-should-use-links-not-keys-to-represent-relationships-in-apis/amp/

A link to each related item on the order (e.g.,).GET /orders/1234/lineItems/1
A link to the shipping vendor's tracking information (e.g., GET https://tools.usps.com/go/TrackConfirmAction?

).tLabels=9374859697090312216947
A link to cancel the order (e.g.,).DELETE /orders/1234
A link to see all open orders (e.g.,).GET /customers/1/openOrders

Each of these links are capable of changing the (i.e., the resource content as it exists in the at a specific point in time). Note, application state client
however, that some of these links simply request additional resource content (i.e., via the method) but links also exist to request a to the GET change
resource state (such as cancelling the order). The important point is that all of these links were provided by the server at the time the resource was
requested. This implies that the server used the (i.e., the resource content as it exists in the at a specific point in time) to determine resource state server
which links were applicable when the request was made.application state

This describes a type of functional contract. Servers inform clients what can be done through hypermedia and clients inform servers what they want to do
through the same hypermedia. This provides the basis of statelessness with our RESTful APIs. That is, servers don't track (and don't care about) the
application state of each and every client. Rather, servers (i.e., our APIs) only cares about requested resource state changes when a client calls our API.
When the request is made, our API returns resource content (static and hypermedia) that is appropriate at that time. Likewise, clients also should not care
about the resource state of the server. They should only be concerned with the application state and any responses the server returns when a change in
the resource state is made.

Let's revisit the API again. It was previously suggested that the resource might include a link to cancel the order. In order for GET /orders/1234
HATEOAS to work as intended, the server needed to verify that order #1234 was capable of being cancelled. This could rely on a number of factors, such
as permissions of the user, whether the product was already shipped, or terms and conditions of this order. In all cases, the server returns or withholds the
link (hypermedia) order cancellation link as needed.

In Summary

HATEOAS is an important design element of APIs that contributes to the constraint of REST. However, HATEOAS will be underutilized if uniform interface
clients aren't programmed to expect and utilize hypermedia content. In these cases, RESTful APIs are not much more than ways to access static resource
content. Therefore, in order for HATEOAS to be worthwhile, both clients and servers need to support hypermedia content and use it request changes in
the resource state.

	Why is HATEOAS important?

