
How do I create a resource?
This article provides instructions on creating a simple resource that will be represented by a JSON object. Complex resources, as well as resources that
need to be represented in other formats, will be covered in other articles. This article will also focus on creating a resource based on a database table.
Since the SRP HTTP Framework ships with a sample database table, we'll use it for our demonstration purposes. All of our examples will CONTACTS
assume the following API is being called:

GET /contacts/1

Resources that are not based on data in a table can still use some of the principles presented below, but there will need to be a little more effort. We will
provide additional articles demonstrating how non-database resources can be created.

The Resource Object
Have it Your Way

Method 1: Using the GetDatabaseItem Service
Method 2: Using the GetObject Service
Method 3: Using the SRP_Json Utility Function

The Resource Object

We've already that a resource can be represented in any digital format, but the conventional format used by RESTful APIs is to use JSON. In explained
our documentation we will often make reference to the , which is short-hand for the "resource as represented by a serialized JSON resource object
object". Please note that at times we will also use the term as a synonym for , even though a can mean much more than resource resource object resource
that.

Have it Your Way

There are three basic methods for creating a resource within the SRP HTTP Framework although no method completely excludes the use of features from
the other methods. You will choose the method that best suits your needs. We will list the pros and cons of each method and provide sample code that
creates the same resource using each method.

Method 1: Using the ServiceGetDatabaseItem

For simple database related resources, the service (a member of the module) can be used with minimal GetDatabaseItem HTTP_Resource_Services
code. Just get the Key ID from the prepopulated variable and pass in the name of the database table:EndpointSegment

API contacts.ID.GET

 KeyID = EndpointSegment

 HTTP_Resource_Services('GetDatabaseItem', 'CONTACTS', '', KeyID)

end api

This produces the following :resource object

https://wiki.srpcs.com/pages/viewpage.action?pageId=20382515
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Resource_Services
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Resource_Services

{
 "address":"6649 N Blue Gum St",
 "birthdate":"",
 "city":"New Orleans",
 "company":"Benton, John B Jr",
 "county":"Orleans",
 "email":"jbutt@gmail.com",
 "first_name":"James",
 "last_name":"Butt",
 "notes":"",
 "picture":"\\WebAppData\\ContactPictures\\1.jpeg",
 "state":"LA",
 "url":"http://www.bentonjohnbjr.com",
 "zip":"70116",
 "phone":[
 {
 "phone_number":"(504) 621-8927",
 "phone_type":"Phone 1"
 },
 {
 "phone_number":"(504) 845-1427",
 "phone_type":"Phone 2"
 }
]
}

One of the drawbacks of calling the service is that names are formatted with underscores (i.e., how they appear in the GetDatabaseItem property
dictionary) rather than as camel case (which is the conventional format for JSON objects). Another drawback is that the service attempts GetDatabaseItem
to create a resource object from all column data (both physical and calculated). This might be undesirable if some of the data is meaningless to the client.
Consider the property in the above resource object. It references an image file stored locally on the server, which has no value to the client. This picture
can also be problematic if a calculated column encounters a runtime error or is dependent upon information that only exists within an OpenInsight desktop
session. To avoid these problems, we will take advantage of the optional and arguments. To keep our sample code simple ColumnNames ItemArrayLabel
and concise, we will limit our resource to just the , , , , , and database columns:FIRST_NAME LAST_NAME ADDRESS CITY STATE ZIP

API contacts.ID.GET

 KeyID = EndpointSegment

 ColumnNames = 'FIRST_NAME' : @FM : 'LAST_NAME' : @FM : 'ADDRESS' : @FM : 'CITY' : @FM : 'STATE' : @FM :
'ZIP'
 ItemArrayLabel = 'firstName' : @FM : 'lastName' : @FM : 'address' : @FM : 'city' : @FM : 'state' : @FM :
'zipCode'
 HTTP_Resource_Services('GetDatabaseItem', 'CONTACTS', '', KeyID, ColumnNames, ItemArrayLabel)

end api

Our now appears like this:resource object

{
 "address": "6649 N Blue Gum St",
 "city": "New Orleans",
 "firstName": "James",
 "lastName": "Butt",
 "state": "LA",
 "zipCode": "70116"
}

Pros:

Simple to call.
It creates the HTTP response and automatically. Body Content-Type Header

Cons:

Deprecated (but there are no plans to remove it).
HATEOAS support is limited.
Cannot include the Key ID within the resource object.

https://wiki.srpcs.com/pages/viewpage.action?pageId=20382587

Method 2: Using the ServiceGetObject

GetDatabaseItem is an example of a high-level service. That is, it relies upon a simple interface and default behavior. Like other high-level services, GetDat
 is built on top of slightly lower-level services. The most important one of these is (which is another member of the abaseItem GetObject HTTP_Resource_

 module). Let's look at an example of an API that uses the service to produce the same resource object as the Services GetObject GetDatabaseItem
service:

API contacts.ID.GET

 KeyID = EndpointSegment

 ColumnNames = 'FIRST_NAME' : @FM : 'LAST_NAME' : @FM : 'ADDRESS' : @FM : 'CITY' : @FM : 'STATE' : @FM :
'ZIP'
 PropertyNames = 'firstName' : @FM : 'lastName' : @FM : 'address' : @FM : 'city' : @FM : 'state' : @FM :
'zipCode'
 // Create a JSON object in memory.
 objResource = HTTP_Resource_Services('GetObject', 'CONTACTS', KeyID, ColumnNames, PropertyNames)
 If Error_Services('NoError') then
 // Serialize the JSON object.
 jsonResource = HTTP_Resource_Services('GetSerializedResource', objResource)
 // Set the response body with the serialized JSON object and set the Content-Type response header.
 HTTP_Services('SetResponseBody', jsonResource, False$, 'application/hal+json')
 end else
 // There is an error condition so call the SetResponseError service.
 HTTP_Services('SetResponseError', '', '', 500, Error_Services('GetMessage'), FullEndpointURL)
 end

end api

In many ways, and are the same and share some of the same arguments. differs from in the GetObject GetDatabaseItem GetObect GetDatabaseItem
following ways:

GetDatabaseItem returns the resource object in JSON (i.e., stringified JSON) whereas returns a to the JSON object.serialized GetObject handle
GetDatabaseItem automatically updates the HTTP response with the resource object and the whereas Body Content-Type Header GetObject
leaves this to the calling process to handle.
GetDatabaseItem will create and HATEOAS links in the resource object if the optional argument is used whereas self collection SelfURL GetObject
only creates a HATEOAS link.self
GetDatabaseItem does not do any error checking before it updates the HTTP response and the whereas Body Content-Type Header GetObject
performs a lot of error checking.

Since only returns a handle to the JSON object, it is the responsibility of the calling process to serialize the resource and update the HTTP GetObject
response (e.g., , , , etc.). The reason developers might choose to work with the service instead of the Body Content-Type Header Status Code GetObject Get

 service (aside from the latter being deprecated) is because developers might require a little more control and ability to customize the DatabaseItem
resource object. For this reason, developers have access to several other useful services (aka services) such as , companion AddProperty AddSubProperty
, , , , and .AddSubResource AddLInkRelation AddEmbeddedResources AddFormAction

Pros:

Custom control over the creation of the resource object.
Ability to include the Key ID within the resource object.
Ability to identify a part of a Key ID as the resource ID.
Lower-level errors can be trapped and handled as desired.
Can use the member services for additional functionality.SRP_JSON

Cons:

Caller must serialize the JSON object.
Caller responsible for setting HTTP response elements.

There is also a service. This is a wrapper around the service. It provides the developer with a argument so multiple rows from GetObjects GetObject Filter
a database table can be selected and thus converted into object handles. These object handles are returned as an @FM delimited list to the calling
routine. Look at the final code sample in the article to see how useful this can be.How do I add a sub-resource to a resource?

Method 3: Using the Utility FunctionSRP_Json

When complete control at the lowest level is required, you'll want to use to create your resource. As noted above, the handle returned by the SRP_JSON G
 service is compatible with the function and vice-versa. Therefore, a developer can choose to start with either method and continue to etObject SRP_JSON

use member services and the higher level companion services (e.g., , , etc.) at will. One unique SRP_JSON GetObject AddProperty AddSubProperty
feature of is its ability to interrogate the resource object using services like . This is useful when a resource object is generated SRP_JSON GetValue
elsewhere. Examples of how this can work will be documented in another article. For now, here is an example of how our simple resource can be created
primarily using :SRP_JSON

https://wiki.srpcs.com/display/HTTPFramework/HTTP_Resource_Services
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Resource_Services
https://wiki.srpcs.com/pages/viewpage.action?pageId=20382820
https://wiki.srpcs.com/display/SRPUtilities/SRP_Json
https://wiki.srpcs.com/display/SRPUtilities/SRP_Json+GetValue

API contacts.ID.GET

 KeyID = EndpointSegment

 // Create a JSON object in memory.
 If SRP_JSON(objResource, 'New') then
 ContactRow = Database_Services('ReadDataRow', 'CONTACTS', KeyID)
 If Error_Services('NoError') then
 SRP_JSON(objResource, 'SetValue', 'firstName', ContactRow<CONTACTS_FIRST_NAME$>, 'String')
 SRP_JSON(objResource, 'SetValue', 'lastName', ContactRow<CONTACTS_LAST_NAME$>, 'String')
 SRP_JSON(objResource, 'SetValue', 'address', ContactRow<CONTACTS_ADDRESS$>, 'String')
 SRP_JSON(objResource, 'SetValue', 'city', ContactRow<CONTACTS_CITY$>, 'String')
 SRP_JSON(objResource, 'SetValue', 'state', ContactRow<CONTACTS_STATE$>, 'String')
 SRP_JSON(objResource, 'SetValue', 'zipCode', ContactRow<CONTACTS_ZIP$>, 'String')
 // Serialize the JSON object and release the object from memory.
 jsonResource = SRP_JSON(objResource, 'Stringify', 'Fast')
 SRP_JSON(objResource, 'Release')
 // Set the response body with the serialized JSON object and set the Content-Type response header.
 HTTP_Services('SetResponseBody', jsonResource, False$, 'application/hal+json')
 end else
 // There is an error reading the CONTACTS row. Probably a non-existent row.
 HTTP_Services('SetResponseError', '', '', 404, 'Contact ' : KeyID : ' does not exist.',
FullEndpointURL)
 end
 end else
 // There is an error condition so call the SetResponseError service.
 HTTP_Services('SetResponseError', '', '', 500, 'Unable to create JSON object', FullEndpointURL)
 end

end api

There are a few items about this sample code that need to be pointed out:

The above represents one way of utilizing but is certainly not the only way.SRP_JSON
The database row is read using the service (a member of the module). This service module ships CONTACTS ReadDataRow Database_Services
with the SRP HTTP Framework but is not required. The row can be read using any statement, SSP, or custom written stored procedure.
The success of the service is confirmed using the service (a member of the module). This service module ReadDataRow NoError Error_Services
ships with the SRP HTTP Framework but is not required.

Pros:

All the benefits of the service method.GetObject
Can use the companion services for convenience.GetObject
Provides access to services that can interrogate the handle to the resource object.

Cons:

Caller must serialize the JSON object.
Caller responsible for setting HTTP response elements.
Caller must handle errors with services directly.SRP_JSON
Object handle to must be released directly.SRP_JSON
Uses generic JSON terminology rather than resource object terminology.

https://wiki.srpcs.com/display/SRPFrameWorks/Database_Services
https://wiki.srpcs.com/display/SRPFrameWorks/Error_Services

	How do I create a resource?

