
How do I authenticate my API?
Solutions for web APIs is an important topic and there are many solutions available. Some methods are easy to implement locally and authenticating
others require outsourcing to a security solution provider. The SRP HTTP Framework ships with a few pre-built authentication methods so developers have
an out-of-the-box solution. However, the authentication framework is extensible. Developers can add to or modify it as needed. Alternative ways of
handling authentication will be covered in separate articles.

Authentication versus Authorization
Enabling Authentication
Using HTTP Basic Authentication

Enabling HTTP Basic Authentication
Creating a Web Account
Authenticating the HTTP Request

Using Non-Authenticated URLs
Whitelisted IPs
Authentication Failures

401 Unauthorized Request
403 Forbidden

Authentication versus Authorization

The terms authentication and authorization are sometimes used interchangeably and they seem analogous. While they are related, they do mean different
things and it is important to understand those distinctions.

Authentication is the method to confirm a user's (i.e.,). This is often handled through a username and password identity Are they who they say they are?
but it can be handled in various other ways (facial scanning, fingerprint reading, responses to text message on your cell phone). The purpose of
authentication is to grant or deny the user access.

Authorization is the method to identify a user's (i.e.,). Sometimes these permissions are referred to as or permissions What can this user do? privileges sco
. Permissions are often configured through a user management tool.pe

To use an analogy of someone entering an office building, should be used to grant a visitor access to the lobby, but should be authentication authorization
used to identify which hallways and office rooms that are accessible to the visitor.

Some security methods combine the two, such as . Other security methods just assume an authenticated user is fully authorized to access OAuth
everything. The pros and cons of these methods is worthy of another article. The main takeaway here is to understand the caveats of each implementation
and to avoid the mistake of treating authentication the same as authorization (or vice-versa).

Enabling Authentication

Regardless of which authentication method(s) will be used, the option needs to be set. Otherwise, the SRP HTTP Framework will Enable Authentication
automatically authenticate each request as valid (although any internal logic will still work as normal). To set this option, run the authorization HTTP

 form (e.g., from the System Monitor) and then click on the menu to open the Framework Setup EXEC NDW_HTTP_FRAMEWORK_SETUP Authentication Aut
 page. Make sure the box is checked:hentication Options Enable Authentication?

Using HTTP Basic Authentication

The SRP HTTP Framework provides built-in support for . This is a simple username and password method for identifying the HTTP Basic Authentication
web user. It conforms to the stateless constraint of REST because it assumes that each and every request will use HTTP Basic Authentication. Thus, this
does not inherently provide a way of "logging in" to the web application. Because the user credentials are passed included in the HTTP request, it is highly
recommended that this form of authentication only be used through an encrypted transmissions (i.e., HTTP over SSL or for short).HTTPS

Enabling HTTP Basic Authentication

In addition to the option being set, the option also needs to be set. This option is immediately Enable Authentication Enable HTTP Basic Authentication
below the option on the page. We'll review the sub-options for this later.Enable Authentication Authentication Options

Creating a Web Account

https://en.wikipedia.org/wiki/OAuth
https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/HTTPS

1.
2.

Unless changed by the developer, user credentials are maintained in the database table. To manage web accounts just run the WEB_ACCOUNTS Web
 form (e.g.,). To create a new user you can enter in an ID and populate the rest of the fields manually or you can Accounts EXEC NDW_WEB_ACCOUNTS

click on the menu option. This will dynamically generate an ID and prepopulate other fields for you:New Account

The field must be updated (it's a required field in this form) and the menu option clicked. We'll review the other fields later.Name Save Account

Authenticating the HTTP Request

The Wikipedia article on provides an easy to understand overview of how usernames and passwords are to be Base64 HTTP Basic Authentication
encoded and then added to the HTTP request header. API testing tools like Postman make this very easy to implement. Here's a simple Authorization
guide:

Click the tab (Note: Even though the term is used, it is technically).Authorization Authorization Authentication
Pick as the authentication type from the dropdown.HTTP Auth

https://en.wikipedia.org/wiki/Basic_access_authentication

3.

4.

Enter the and (for demonstration purposes, the above screenshot uses the same username and password that was auto-Username Password
generated by the form). You might want to enable the chekbox as well.Web Accounts Show Password
Click on the button. This last step is necessary to transfer the authentication information into the HTTP request Preview Request Authorization
header. You can confirm this by clicking on the tab (the one to the right of the tab):Headers Authorization

The HTTP request can now be submitted by clicking the button and the SRP HTTP Framework should identify the username and password correctly Send
and return an appropriate response. We'll discuss how APIs can identify the username and password used in the HTTP request for purposes authorization
in another article.

Using Non-Authenticated URLs

Non-Authenticated URLs are special URLs that are intended to by-pass the default authentication requirements. That is, even if you have HTTP
Authentication enabled, any URL that appears in the list of non-authenticated URLs will be accepted automatically. Note, these URLs (or endpoints) do not
need to include the Home and API URL portion.

The purpose of this list is to allow requests between trusted servers to be processed automatically. A common example of this is with OAuth. OAuth works
when the server you are trying to access requests an from a 3rd party (e.g., Facebook, Google, Microsoft, etc.). This access token grants the access token

 access to various resources on the 3rd party (aka) platform. The negotiation between the and the requesting server identity provider requesting server ident
 is handled behind the scenes through trusted URLs. Since an cannot be expected to know how to authenticate itself to each ity provider identity provider

and every , it is expected that the provide at least one URL that can be reached without any authentication.requesting server requesting server

Another use for a non-authenticated URL is for ping tests. Granted, any URL could be used for ping testing, but these will only return a generic 401
(Unauthorized) response. If you want to return a specific response, then create an API for it and add it to the list of non-authenticated URLs.

Whitelisted IPs

There are cases where a web server only exists to serve a limited range of clients. provides a way to note which IP addresses are Whitelisted IPs
permitted to make API requests. If there are no IPs whitelisted then all IPs are permitted. This does not by-pass authentication (i.e., this is not the same as
a non-authenticated URL). All requests will still need to be authenticated, assuming authentication is enabled.

Authentication Failures

The default SRP HTTP Framework authentication logic performs two types checks as described below.

401 Unauthorized Request

Any request that fails to authenticate itself properly will automatically be rejected with a response like this:

Status: 401 Unauthorized (RFC 7235)
Access-Control-Allow-Origin: *
Content-Type: application/problem+json
Content-Length: 113

{
 "type":"about:blank",
 "title":"Unauthorized (RFC 7235)",
 "status":401,
 "instance":"http://127.0.0.1/api/customers"
}

403 Forbidden

Any attempt to authenticate with a disabled web account will be rejected with a response like this:

Status: 403 Forbidden
Access-Control-Allow-Origin: *
Content-Type: application/problem+json
Content-Length: 138

{
 "type":"about:blank",
 "title":"Forbidden",
 "status":403,
 "Detail":"Account UWvva9 is disabled.",
 "instance":"http://127.0.0.1/api/customers"
}

	How do I authenticate my API?

