
3.x - Preparing the Response
Obviously a web service will have little value if it cannot return content that is being requested. Even APIs that are only meant to send data to the server
should still provide some content in the response. The following information will provide some basic guidelines for preparing the HTTP response.

An HTTP response is normally composed of three components:

The and phraseHTTP status code
One or more and valuesHTTP response header fields
The HTTP body

HTTP Status Code

All responses need to set the status code. This is the primary indicator to the client how the request was processed. Web services should be designed to
follow proper HTTP protocols and attempt to set the the status code that is most appropriate given the final disposition of the API logic.

Use the service from the module to set the status code and (optionally) the phrase. This service can be called multiple SetResponseStatus HTTP_Services
times, but only the last status will be saved. One reason for using this service more than once is so a default (or expected) status can be set early in the
API logic, but if an unexpected condition occurs later on, then the status can be overridden to reflect the new situation. Here is an example SetResponseSt

 service being used:atus

HTTP_Services('SetResponseStatus', 405, HTTPMethod : ' is not valid for this service.')

If the SetResponseStatus service is never called, the SRP HTTP Framework will automatically return a status code of to ensure a well formed 200 OK

response.

HTTP Response Headers

Responses are not strictly required to include HTTP response headers, but specific circumstances might require particular response headers. It is beyond
the scope of this documentation to explore these cases, but this can provide some useful guidance.www.w3.org article

Use the service from the module to set response header fields and values. This service can be called multiple SetResponseHeaderField HTTP_Services
times for the same header field, but it will always replace the current value unless the argument is set to . The argument would be Append True Append
used when the header field needs to return multiple values. For example, the header field is used to inform the client which HTTP methods are Allow
supported by the current URL. Let's assume that the and methods are supported. There are two ways to set these values:GET OPTIONS

Option #1

HTTP_Services('SetResponseHeaderField', 'Allow', 'GET, OPTIONS')

Option #2

HTTP_Services('SetResponseHeaderField', 'Allow', 'GET', True$)
HTTP_Services('SetResponseHeaderField', 'Allow', 'OPTIONS', True$)

HTTP Body

GET requests are expected to return some form of content in the HTTP body. This could be a JSON or XML formatted database row, a Base64 encoded
image, or a report published as a PDF file. Even a request or an error condition should endeavor to return content in the HTTP body that is human POST
readable so that it is obvious how the request was processed.

Use the service from the SetResponseBody HTTP_Services module to set the body content. This service allows you to set the response Content-Type
header value at the same time. This is an important header that identifies the media type being sent back. The client will use this value to determine how to
properly handle the content. Alternatively, the SetResponseHeaderField service could be used to set the response header value. For Content-Type
example:

Option #1

HTTP_Services('SetResponseBody', JSONRecord, False$, 'application/hal+json')

Option #2

https://en.wikipedia.org/wiki/List_of_HTTP_status_codes
https://en.wikipedia.org/wiki/List_of_HTTP_header_fields#Response_fields
https://en.wikipedia.org/wiki/HTTP_message_body
https://wiki.srpcs.com/display/HTTPFramework/SetResponseStatus
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Services
https://wiki.srpcs.com/display/HTTPFramework/SetResponseStatus
https://wiki.srpcs.com/display/HTTPFramework/SetResponseStatus
https://wiki.srpcs.com/display/HTTPFramework/SetResponseStatus
https://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html
https://wiki.srpcs.com/display/HTTPFramework/SetResponseHeaderField
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Services
https://wiki.srpcs.com/display/HTTPFramework/SetResponseBody
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Services
https://wiki.srpcs.com/display/HTTPFramework/SetResponseHeaderField

HTTP_Services('SetResponseBody', JSONRecord, False$)
HTTP_Services('SetResponseHeaderField', 'Content-Type', 'application/hal+json')

It's a Wrap

The above services are all that are required of the API developer. Before the returns control back to the OECGI, it calls the HTTP_MCP controller GetResp
 service onse from the HTTP_Services module. This service is responsible for collecting all of the response content and packaging it in a way that is

expected by the OECGI so it can send it back to the client.

https://wiki.srpcs.com/display/HTTPFramework/HTTP_MCP
https://wiki.srpcs.com/display/HTTPFramework/GetResponse
https://wiki.srpcs.com/display/HTTPFramework/GetResponse
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Services

	3.x - Preparing the Response

