
3.x - Pass Throughs and End Points
Web service routines will either serve as to other web services or they will serve as . As we observed in the pass throughs end points 3.x - URL Paths

 article, the URL itself usually makes this self-evident. But how does the web service code differ between the two operations?and Web Services

Pass Through Logic

One of the security barriers imposed by the SRP HTTP Framework is the requirement that preceding web services must allow the request to be passed
through to the subsequent web services. This prevents any specific web service from just arbitrarily being tacked onto the end of a URL in hopes that it will
force the SRP HTTP Framework to call it.

This design is very similar to the way MFS routines are stacked. That is, the first MFS listed in the stack must make sure the next MFS is called or it won't
be implemented. The SRP HTTP Framework provides a specific service, , to handle this pass through. The first instance where the RunHTTPService RunH

 is used in in . Here is the relevant code:TTPService HTTP_MCP

EntryPointService = HTTP_Services('GetEntryPointService')
RemainingURL = HTTP_Services('GetHTTPPathInfo')
HTTP_Services('RunHTTPService', EntryPointService, RemainingURL)

The above code relies upon the and the service to launch the entry point web service. The default entry point GetEntryPointService GetHTTPPathInfo
service () provides a nice template for how a web service will process a typical pass through to a subsequent web service. HTTP_Entry_Point_Services
Look at this snippet from the router block:

Case NextSegment _EQC 'users'
 // NextSegment contains the name of another service. The RemainingURL must be updated to show that the
 // NextSegment is not longer a part of the RemainingURL. Then the RunHTTPService service should be called.
 RemainingURL = Field(RemainingURL, '/', 2, 99)
 HTTP_Services('RunHTTPService', NextSegment, RemainingURL)

Case NextSegment _EQC 'contacts'
 // NextSegment contains the name of another service. The RemainingURL must be updated to show that the
 // NextSegment is not longer a part of the RemainingURL. Then the RunHTTPService service should be called.
 RemainingURL = Field(RemainingURL, '/', 2, 99)
 HTTP_Services('RunHTTPService', NextSegment, RemainingURL)

The variable is pre-assigned for us via the insert. So, if the next segment in the URL actually is the next web service, NextSegment HTTP_Service_Setup
then this does not need to be changed. The variable comes from the incoming parameter of the current routine, so it will need to be RemainingURL
updated before passing it onto the next web service (again, similar to the way MFS routines remove themselves from the stack before moving on).

If the variable contains a resource ID, then it will need to be updated with the name of the next web service segment. As the developer, you NextSegment
can can populate this in whatever way makes sense, but most likely you will pull this out of the variable. Consequently, the RemainingURL RemainingURL
will be updated accordingly.

End Point Logic

The end point of any URL defines the nature of the response being requested. This is typically a collection (e.g.,) or a specific resource (e.g., /customers
). The nature of the action is defined by the HTTP method used to make the request./customers/5678

While the end point will almost always be one of the two types of URLs demonstrated the above paragraph, there can also be which might query params
be used to qualify (or filter) a resource collection (e.g.,). This can create a third option that might be handled in the web /customers?name="acme"
service. Here is what the router block might look like:

https://wiki.srpcs.com/display/HTTPFramework/3.x+-+URL+Paths+and+Web+Services
https://wiki.srpcs.com/display/HTTPFramework/3.x+-+URL+Paths+and+Web+Services
https://wiki.srpcs.com/display/HTTPFramework/RunHTTPService
https://wiki.srpcs.com/display/HTTPFramework/RunHTTPService
https://wiki.srpcs.com/display/HTTPFramework/RunHTTPService
https://wiki.srpcs.com/display/HTTPFramework/HTTP_MCP
https://wiki.srpcs.com/display/HTTPFramework/GetEntryPointService
https://wiki.srpcs.com/display/HTTPFramework/GetHTTPValue
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Entry_Point_Services
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Service_Setup

Case Len(NextSegment)
 // NextSegment contains the Item ID for the current service/resource. This means the URL ends with
 // /customers/<ItemId>. The client is requesting a specific customer item.
 SelfURL = HTTP_Services('GetSelfURL')

 Begin Case
 Case HTTPMethod _EQC 'GET' ; GoSub GetItem
 Case HTTPMethod _EQC 'OPTIONS' ; GoSub OptionsItem
 Case HTTPMethod _EQC 'POST' ; GoSub PostItem
 Case HTTPMethod _EQC 'DELETE' ; GoSub DeleteItem
 Case Otherwise$; ValidMethod = False$
 End Case

Case HasGetString
 // This means the URL ends with /customers?name=<string>. The client is searching for matching contact
items.
 SelfURL = HTTP_Services('GetSelfURL')

 Begin Case
 Case HTTPMethod _EQC 'GET' ; GoSub GetSearch
 Case HTTPMethod _EQC 'OPTIONS' ; GoSub OptionsSearch
 Case Otherwise$; ValidMethod = False$
 End Case

Case RemainingURL _EQC ''
 // This means the URL ends with /customers, which means this is the end point. The client is requesting a
 // collection of all customers.
 SelfURL = HTTP_Services('GetSelfURL')

 Begin Case
 Case HTTPMethod _EQC 'GET' ; GoSub Get
 Case HTTPMethod _EQC 'OPTIONS' ; GoSub Options
 Case HTTPMethod _EQC 'POST' ; GoSub Post
 Case Otherwise$; ValidMethod = False$
 End Case

Each condition in the above code immediately validates the HTTP method. This is another control mechanism. Each end point configuration will allow only
specific HTTP methods to be processed. Otherwise, the web service will set a 405 () status.Method Not Allowed

RESTful APIs make full use of the HTTP method to determine how to process the request. For simple web services where the end point is tied to a single
database table, the and the routines provide a good starting point and should be easy to adapt for your HTTP_Users_Services HTTP_Contacts_Services
own purposes.

https://wiki.srpcs.com/display/HTTPFramework/HTTP_Users_Services
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Contacts_Services

	3.x - Pass Throughs and End Points

