
3.x - URL Paths and Web Services
Let's go into a little more detail regarding the information introduced in the article. It is important to understand how the URL (and the URL Navigation
individual segments within the URL) translate into specific web service routines within the SRP HTTP Framework. Below is the same URL graphic that we
have already seen:

Let's use this sample URL and break it down so we can properly understand how this fits within the SRP HTTP Framework processing flow:

Segment Description

https:// This is the communication protocol. It will either be HTTP or HTTPS. While this information is available to the SRP HTTP Framework, it is
rare that your API code will use it.

www.
myapplic
ation.
com

This is the domain (aka Home URL). While this information is available to the SRP HTTP Framework, it is rare that your API code will use
it. However, this should match the value in the so your responses can include well-formed links that the normally Home URL configuration
client can use to navigate further.

/api This is the API URL. Technically, this isn't a complete URL. The complete URL would be a combination of the protocol, Home URL and
the API URL (e.g., defines where the API entry point begins. Normally, the API URL is). This https://www.myapplication.com/api
not the same as the Home URL so that users can enter into the website (e.g., and be greeted)https://www.myapplication.com
with a home page rather than immediately invoke API logic. Normally, users never enter the API URL. This is handled behind the scenes
via JavaScript or some other server-side scripting logic (PHP, ASP.Net, or even a proxy server routing requests from a customer facing
server into separate API server.)

Regardless of what the API URL is, when this is the address, the request will pass through the controller and into the HTTP_MCP entry
 web service. The entry point will be executed regardless of the full URL used for the request.point always

This is the first, and most important, step of walking the URL path. The entry point is responsible for authentication and it is
responsible for allowing the rest of the URL path to be processed.

/custome
rs

This segment is associated with the (or) resource type. Remember, RESTful URLs are to be treated as customer customers nouns
(resources). Any segment that is associated with a resource type will normally be its own web service and have its own BASIC+ stored
procedure designed to handle this resource. The SRP HTTP Framework is designed to automatically assume that any web service will be
named like this: . For this example, the web service routine would be named HTTP_ _Services<URLSegment> HTTP_Customers_Serv

.ices

Therefore, any web service you create should follow this naming pattern. If you already know the name of a resource type you
intend to use (e.g., , , , etc.), then you may want to create a basic web service shell first (e.g./invoices /vendors /parts , HTTP_Invoi

, , , etc.). Using one of the sample service routines that are ces_Services HTTP_Vendors_Services HTTP_Parts_Services
included (or) can help you get a web service working fairly quickly, especially if your HTTP_Users_Services HTTP_Contacts_Services
web service is tied to a single database table.

/5678 Intuitively we see that this segment represents a specific customer of interest. Because represents a resource, rather than a 5678 specific
resource type, there will not be a specific web service to handle this segment.

Therefore, it is the responsibility of the preceding web service (to at HTTP_Customers_Services)in this example look ahead
the argument to see if there is a customer ID being passed in.RemainingURL If there is one, then the web service will attempt to
retrieve this resource and prepare a response containing details for this customer. If there isn't one, then the web service will normally
assume that all of the customers (typically referred to as a) are being requested. This does not necessarily mean that every collection
detail of every customer needs to be returned. The normal practice is to return a list of customer IDs, names, and URLs needed to easily
access each specific customer.

/phone This segment is associated with the (number) for the customer. The previous segments give us the broader context: Customer phone
#5678. Now, is certainly a type of resource. That is to say, there are different types of phones (work, fax, mobile), so it is certainly phone
reasonable for this segment to be managed by its own web service (e.g.,). However, this doesn't have to be HTTP_Phone_Services
implemented this way. Since is clearly related to the customer, this could also be handled by the phone HTTP_Customers_Services
routine. In this case, is of a resource, and of a field being request. That is would return all of the phone less more /customers/5678
customer details, but would limit the information to the phone numbers. From an API point of view, it doesn't /customers/5678/phone
really matter how this is managed. The response will be the same and the client's URL would remain the same.

/work Following our discussion about the segment, the segment represents a specific type of phone number being requested. phone work
Therefore, it will never have its own web service. Instead, this will either be used by the web service or the web service, customers phone
depending on which service was used to handle the segment in the first place. This is why the argument is very phone RemainingURL
important. It gives the current web service logic a way to analyze the remaining segments and then decide how the rest of the URL should
be processed.

/work represents the end point of the URL. This is important as the end point determines what the final response should look like.

So, the above URL could follow one of two logical paths within the SRP HTTP Framework:

https://wiki.srpcs.com/display/HTTPFramework/URL+Navigation
https://wiki.srpcs.com/display/HTTPFramework/SRP_HTTP_FRAMEWORK_SETUP
https://wiki.srpcs.com/display/HTTPFramework/HTTP_MCP
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Entry_Point_Services
https://wiki.srpcs.com/display/HTTPFramework/HTTP_Entry_Point_Services
https://wiki.srpcs.com/display/HTTPFramework/3.x+-+HTTP_Users_Services
https://wiki.srpcs.com/display/HTTPFramework/3.x+-+HTTP_Contacts_Services

1.

2.

HTTP Request > OECGI > HTTP_MCP > HTTP_Entry_Point_Services > HTTP_Customers_Services > HTTP_Phone_Services > HTTP
Response

- or -

HTTP Request > OECGI > HTTP_MCP > HTTP_Entry_Point_Services > HTTP_Customers_Services > HTTP Response

In the first case, is only responsible for validating the customer ID, and then it passes the API request through to HTTP_Customers_Services HTTP_Pho
. In the second case, validates the customer ID it handles the phone number, which is the expected ne_Services HTTP_Customers_Services and

response. If there are no other segments that will be supported past this end point, then it may prove to be easier to use the second case. This keeps all
customer related data managed under the same web service routine.

	3.x - URL Paths and Web Services

