
MFS Applications
An MFS is a likely solution anytime a developer wishes to monitor or control all activity in a file. Because the MFS sits on top of the filing system itself, it
can oversee all operations in the file, regardless of what means a user might find to access the file (except a direct call to the BFS -- see "Programming an
MFS"). Excellent candidates for MFS implementation include the following functions:

Application Description

Encryptio
n and
Compress
ion

An MFS can be used to monitor all reads and writes to a file, and pass the record through appropriate encryption or compression routines
before the data is filed away. When the data is read later, the MFS can call decryption or decompression routines to return the data to its
original form. At the BASIC+ level, all file I/O appears normal.

Audit
Trails and
Indexing

Because an MFS can detect when there is an attempt to read, write or delete records in a file, it can maintain an audit trail of all such
activity, or can update indexes based on changes to the record. An audit trail or index MFS is an example of an MFS that does not
actually modify the data for the filing system, but simply tracks its usage.

Security
(Record
and Field)

An MFS can use system security information (user names and privilege levels) to grant or deny access to data in the file. For example, the
MFS can monitor all reads to a file and deny access to a user who does not have sufficient access privileges. The MFS might also permit
some users to write to the file, but not others.

This security can be implemented for the record as a whole, or for individual fields. A possible implementation for the latter might null out
fields during a read that are not authorized to a particular user, and replace them before writing the data back to file.

System MFSs in OpenInsight

MFS Description

SI.MFS All files that contain indexed fields are monitored by . If this MFS detects that a change has been made to an indexed field, it SI.MFS
creates a transaction that is later used to update the appropriate index. also traps certain retrieval calls such as anSI.MFS READNEXT
d fulfills them from an index, rather than directly from the file.

 QUICKDEX.
MFS and
RIGHTDEX.
MFS

If installed, and monitor all writes, selects, and deletes against a file. During a write, these MFSs QUICKDEX.MFS RIGHTDEX.MFS
update a hidden record in the file, maintaining a sorted list of keys for records in the file.

During a and , and simply read this hidden record, providing almost instantly SELECT READNEXT QUICKDEX.MFS RIGHTDEX.MFS
a sorted list of record keys. At the same time, the MFSs hide the record by removing its name from any select lists generated by the
user.

DICT.MFS Two major functions are rolled into . First, the MFS monitors writes to any dictionary (any file with a name beginning with DICT.MFS
the characters " "), and calls the dictionary compiler whenever an or type record is written to the file..DICT F S

Second, examines all records being written to look for indexing flags. If any are found (for example, if the sixth field is set, a DICT.MFS
Btree index has been established for that field), calls additional system routines used to create an index for that field.DICT.MFS

DICT.MFS differs from other MFSs in OpenInsight in that it is installed "on the fly." The mere presence of the trigger characters
"DICT." at the front of a file name causes the process to install onto the file automatically. Other MFSs must be ATTACH DICT.MFS
installed explicitly.

https://wiki.srpcs.com/display/Commands/ReadNext+Statement
https://wiki.srpcs.com/display/Commands/Select+Statement
https://wiki.srpcs.com/display/Commands/ReadNext+Statement
https://wiki.srpcs.com/display/Commands/Attach_Table+Subroutine

	MFS Applications

